Optimal designs for comparing several regression curves
被引:0
|
作者:
Liu, Chang-Yu
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R ChinaShanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
Liu, Chang-Yu
[1
]
Liu, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Donghua Univ, Coll Sci, Shanghai 201620, Peoples R ChinaShanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
Liu, Xin
[2
]
Yue, Rong-Xian
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
Fuyao Univ Sci & Technol, Fac Fdn Curriculum, Fuzhou, Peoples R ChinaShanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
Yue, Rong-Xian
[1
,3
]
机构:
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Donghua Univ, Coll Sci, Shanghai 201620, Peoples R China
[3] Fuyao Univ Sci & Technol, Fac Fdn Curriculum, Fuzhou, Peoples R China
This article is concerned with the optimal design problem of efficient statistical inference for comparing several regression curves estimated from samples of independent measurements. The objective is to find the mu pc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu <^>c_{p}$$\end{document}-optimal designs that minimize an Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document}-norm of the asymptotic variance of the prediction for the contrasts of k regression curves. General equivalence theorems are established to verify the mu pc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu <^>c_p$$\end{document}-optimality in the set of all approximate designs. Invariant property with respect to model reparameterization are also obtained. The results obtained for the linear models are extended to the situation of generalized linear models. Three examples are presented to illustrate the applications of the obtained results.
机构:
Univ Cape Town, Dept Stat Sci, Private Bag X03, ZA-7701 Cape Town, South AfricaUniv Cape Town, Dept Stat Sci, Private Bag X03, ZA-7701 Cape Town, South Africa