ON ROBUSTNESS OF OPTIMAL DESIGNS IN POLYNOMIAL REGRESSION

被引:0
|
作者
SKWISH, J
机构
来源
ANNALS OF MATHEMATICAL STATISTICS | 1969年 / 40卷 / 03期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1161 / &
相关论文
共 50 条
  • [1] Constrained optimal designs for polynomial regression
    Lee, Carl M.-S.
    Annual Meeting of the American Statistical Association, 1985,
  • [2] OPTIMAL DESIGNS FOR ESTIMATING SLOPE OF A POLYNOMIAL REGRESSION
    MURTY, VN
    STUDDEN, WJ
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1972, 67 (340) : 869 - 873
  • [3] APPROXIMATE OPTIMAL DESIGNS FOR MULTIVARIATE POLYNOMIAL REGRESSION
    De Castro, Yohann
    Gamboa, Fabrice
    Henrion, Didier
    Hesst, Roxana
    Lasserre, Jean-Bernard
    ANNALS OF STATISTICS, 2019, 47 (01): : 127 - 155
  • [4] OPTIMAL DESIGNS FOR IDENTIFYING THE DEGREE OF A POLYNOMIAL REGRESSION
    DETTE, H
    ANNALS OF STATISTICS, 1995, 23 (04): : 1248 - 1266
  • [5] ADMISSIBLE AND OPTIMAL EXACT DESIGNS FOR POLYNOMIAL REGRESSION
    CONSTANTINE, KB
    LIM, YB
    STUDDEN, WJ
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1987, 16 (01) : 15 - 32
  • [6] OPTIMAL AND ADMISSIBLE DESIGNS FOR POLYNOMIAL MONOSPLINE REGRESSION
    BRUVOLD, NT
    ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (05): : 1786 - &
  • [7] E-OPTIMAL DESIGNS FOR POLYNOMIAL REGRESSION
    PUKELSHEIM, F
    STUDDEN, WJ
    ANNALS OF STATISTICS, 1993, 21 (01): : 402 - 415
  • [8] OPTIMAL DESIGNS FOR LARGE DEGREE POLYNOMIAL REGRESSION
    KIEFER, J
    STUDDEN, WJ
    ANNALS OF STATISTICS, 1976, 4 (06): : 1113 - 1123
  • [9] A note on optimal designs for estimating the slope of a polynomial regression
    Dette, Holger
    Melas, Viatcheslav B.
    Shpilev, Petr
    STATISTICS & PROBABILITY LETTERS, 2021, 170
  • [10] Optimal designs for dual response polynomial regression models
    Chang, FC
    Huang, MNL
    Lin, DKJ
    Yang, HC
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 93 (1-2) : 309 - 322