Optimal designs for comparing several regression curves

被引:0
|
作者
Liu, Chang-Yu [1 ]
Liu, Xin [2 ]
Yue, Rong-Xian [1 ,3 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Donghua Univ, Coll Sci, Shanghai 201620, Peoples R China
[3] Fuyao Univ Sci & Technol, Fac Fdn Curriculum, Fuzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Optimal designs; Multiple comparison; Equivalence theorems; Reparameterization; SIMULTANEOUS CONFIDENCE BANDS; CONTRASTS; MODELS;
D O I
10.1007/s42952-024-00272-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article is concerned with the optimal design problem of efficient statistical inference for comparing several regression curves estimated from samples of independent measurements. The objective is to find the mu pc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu <^>c_{p}$$\end{document}-optimal designs that minimize an Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document}-norm of the asymptotic variance of the prediction for the contrasts of k regression curves. General equivalence theorems are established to verify the mu pc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu <^>c_p$$\end{document}-optimality in the set of all approximate designs. Invariant property with respect to model reparameterization are also obtained. The results obtained for the linear models are extended to the situation of generalized linear models. Three examples are presented to illustrate the applications of the obtained results.
引用
收藏
页码:906 / 924
页数:19
相关论文
共 50 条
  • [41] OPTIMAL DESIGNS FOR ESTIMATING THE DERIVATIVE IN NONLINEAR REGRESSION
    Dette, Holger
    Melas, Viatcheslav B.
    Shpilev, Petr
    STATISTICA SINICA, 2011, 21 (04) : 1557 - 1570
  • [43] Optimal designs for a class of nonlinear regression models
    Dette, H
    Melas, VB
    Pepelyshev, A
    ANNALS OF STATISTICS, 2004, 32 (05): : 2142 - 2167
  • [44] Optimal discrimination designs for exponential regression models
    Biedermann, Stefanie
    Dette, Holger
    Pepelyshev, Andrey
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (08) : 2579 - 2592
  • [45] Optimal and robust designs for trigonometric regression models
    Xiaojian Xu
    Xiaoli Shang
    Metrika, 2014, 77 : 753 - 769
  • [46] Optimal and efficient designs for Gompertz regression models
    Gang Li
    Annals of the Institute of Statistical Mathematics, 2012, 64 : 945 - 957
  • [47] Optimal designs for regression models with autoregressive errors
    Dette, Holger
    Pepelyshev, Andrey
    Zhigljaysky, Anatoly
    STATISTICS & PROBABILITY LETTERS, 2016, 116 : 107 - 115
  • [48] E-OPTIMAL DESIGNS FOR POLYNOMIAL REGRESSION
    PUKELSHEIM, F
    STUDDEN, WJ
    ANNALS OF STATISTICS, 1993, 21 (01): : 402 - 415
  • [49] V-optimal designs for heteroscedastic regression
    Wiens, Douglas P.
    Li, Pengfei
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 145 : 125 - 138
  • [50] OPTIMAL DESIGNS FOR LARGE DEGREE POLYNOMIAL REGRESSION
    KIEFER, J
    STUDDEN, WJ
    ANNALS OF STATISTICS, 1976, 4 (06): : 1113 - 1123