Optimal designs for comparing several regression curves

被引:0
|
作者
Liu, Chang-Yu [1 ]
Liu, Xin [2 ]
Yue, Rong-Xian [1 ,3 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Donghua Univ, Coll Sci, Shanghai 201620, Peoples R China
[3] Fuyao Univ Sci & Technol, Fac Fdn Curriculum, Fuzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Optimal designs; Multiple comparison; Equivalence theorems; Reparameterization; SIMULTANEOUS CONFIDENCE BANDS; CONTRASTS; MODELS;
D O I
10.1007/s42952-024-00272-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article is concerned with the optimal design problem of efficient statistical inference for comparing several regression curves estimated from samples of independent measurements. The objective is to find the mu pc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu <^>c_{p}$$\end{document}-optimal designs that minimize an Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document}-norm of the asymptotic variance of the prediction for the contrasts of k regression curves. General equivalence theorems are established to verify the mu pc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu <^>c_p$$\end{document}-optimality in the set of all approximate designs. Invariant property with respect to model reparameterization are also obtained. The results obtained for the linear models are extended to the situation of generalized linear models. Three examples are presented to illustrate the applications of the obtained results.
引用
收藏
页码:906 / 924
页数:19
相关论文
共 50 条
  • [31] Optimal Designs for Quantile Regression Models
    Dette, Holger
    Trampisch, Matthias
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (499) : 1140 - 1151
  • [32] Optimal designs for estimating the slope of a regression
    Dette, Holger
    Melas, Viatcheslav B.
    Pepelyshev, Andrey
    STATISTICS, 2010, 44 (06) : 617 - 628
  • [33] Comparing Several Regression Models with Unequal Variances
    Sadooghi-Alvandi, S. M.
    Jafari, A. A.
    Mardani-Fard, H. A.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (09) : 3190 - 3216
  • [34] Optimal Designs for Multi-Response Nonlinear Regression Models With Several Factors via Semidefinite Programming
    Wong, Weng Kee
    Yin, Yue
    Zhou, Julie
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2019, 28 (01) : 61 - 73
  • [35] Optimal and efficient designs for Gompertz regression models
    Li, Gang
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2012, 64 (05) : 945 - 957
  • [36] APPROXIMATE OPTIMAL DESIGNS FOR MULTIVARIATE POLYNOMIAL REGRESSION
    De Castro, Yohann
    Gamboa, Fabrice
    Henrion, Didier
    Hesst, Roxana
    Lasserre, Jean-Bernard
    ANNALS OF STATISTICS, 2019, 47 (01): : 127 - 155
  • [37] Exact A-optimal designs for quadratic regression
    Chang, FC
    Yeh, YR
    STATISTICA SINICA, 1998, 8 (02) : 527 - 533
  • [38] OPTIMAL DESIGNS FOR IDENTIFYING THE DEGREE OF A POLYNOMIAL REGRESSION
    DETTE, H
    ANNALS OF STATISTICS, 1995, 23 (04): : 1248 - 1266
  • [39] Minimax optimal designs in nonlinear regression models
    Dette, H
    Sahm, M
    STATISTICA SINICA, 1998, 8 (04) : 1249 - 1264
  • [40] Optimal designs for the identification of the order of a Fourier regression
    Dette, H
    Haller, G
    ANNALS OF STATISTICS, 1998, 26 (04): : 1496 - 1521