Neural orientation distribution fields for estimation and uncertainty quantification in diffusion MRI

被引:3
|
作者
Consagra, William [1 ]
Ning, Lipeng [1 ]
Rathi, Yogesh [1 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Psychiat Neuroimaging Lab, 399 Revolut Dr, Boston, MA 02215 USA
关键词
Uncertainty quantification; Deep learning; Neural field; Diffusion MRI; Functional data analysis; MAGNETIC-RESONANCE DATA; TRACTOGRAPHY; NOISE; VALIDATION; VISUALIZATION; COMPLEX; PHANTOM;
D O I
10.1016/j.media.2024.103105
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Inferring brain connectivity and structure in -vivo requires accurate estimation of the orientation distribution function (ODF), which encodes key local tissue properties. However, estimating the ODF from diffusion MRI (dMRI) signals is a challenging inverse problem due to obstacles such as significant noise, high -dimensional parameter spaces, and sparse angular measurements. In this paper, we address these challenges by proposing a novel deep -learning based methodology for continuous estimation and uncertainty quantification of the spatially varying ODF field. We use a neural field (NF) to parameterize a random series representation of the latent ODFs, implicitly modeling the often ignored but valuable spatial correlation structures in the data, and thereby improving efficiency in sparse and noisy regimes. An analytic approximation to the posterior predictive distribution is derived which can be used to quantify the uncertainty in the ODF estimate at any spatial location, avoiding the need for expensive resampling-based approaches that are typically employed for this purpose. We present empirical evaluations on both synthetic and real in -vivo diffusion data, demonstrating the advantages of our method over existing approaches.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Geodesic Uncertainty in Diffusion MRI
    Sengers, Rick
    Florack, Luc
    Fuster, Andrea
    FRONTIERS IN COMPUTER SCIENCE, 2021, 3
  • [32] EXACT INTEGRATION OF DIFFUSION ORIENTATION DISTRIBUTION FUNCTIONS FOR GRAPH-BASED DIFFUSION MRI ANALYSIS
    Booth, Brian G.
    Hamarneh, Ghassan
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 935 - 938
  • [33] Uncertainty Quantification in Deep MRI Reconstruction
    Edupuganti, Vineet
    Mardani, Morteza
    Vasanawala, Shreyas
    Pauly, John
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (01) : 239 - 250
  • [34] Optimal Diffusion MRI Acquisition for Fiber Orientation Density Estimation: An Analytic Approach
    White, Nathan S.
    Dale, Anders M.
    HUMAN BRAIN MAPPING, 2009, 30 (11) : 3696 - 3703
  • [35] Distribution System Behind-the-Meter DERs: Estimation, Uncertainty Quantification, and Control
    Srivastava, Ankur
    Zhao, Junbo
    Zhu, Hao
    Ding, Fei
    Lei, Shunbo
    Zografopoulos, Ioannis
    Haider, Rabab
    Vahedi, Soroush
    Wang, Wenyu
    Valverde, Gustavo
    Gomez-Exposito, Antonio
    Dubey, Anamika
    Konstantinou, Charalambos
    Yu, Nanpeng
    Brahma, Sukumar
    Rodrigues, Yuri R.
    Ben-Idris, Mohammed
    Liu, Bin
    Annaswamy, Anuradha
    Bu, Fankun
    Wang, Yishen
    Espin-Sarzosa, Danny
    Valencia, Felipe
    Gabrielski, Jawana
    Mohseni-Bonab, Seyed Masoud
    Jazaeri, Javad
    Wang, Zhaoyu
    Srivastava, Anurag
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2025, 40 (01) : 1060 - 1077
  • [36] Efficient Distribution Estimation and Uncertainty Quantification for Elliptic Problems on Domains with Stochastic Boundaries
    Chaudhry, Jehanzeb H.
    Burch, Nathanial
    Estep, Donald
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (03): : 1127 - 1150
  • [37] Fingerprinting Orientation Distribution Functions in diffusion MRI detects smaller crossing angles
    Baete, Steven H.
    Cloos, Martijn A.
    Lin, Ying-Chia
    Placantonakis, Dimitris G.
    Shepherd, Timothy
    Boada, Fernando E.
    NEUROIMAGE, 2019, 198 : 231 - 241
  • [38] Asymmetric Orientation Distribution Functions (AODFs) revealing intravoxel geometry in diffusion MRI
    Karayumak, Suheyla Cetin
    Ozarslan, Evren
    Unal, Gozde
    MAGNETIC RESONANCE IMAGING, 2018, 49 : 145 - 158
  • [39] Efficient DCE-MRI Parameter and Uncertainty Estimation Using a Neural Network
    Bliesener, Yannick
    Acharya, Jay
    Nayak, Krishna S.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (05) : 1712 - 1723
  • [40] Accelerating MRI Uncertainty Estimation with Mask-based Bayesian Neural Network
    Zhang, Zehuan
    Genci, Matej
    Fan, Hongxiang
    Wetscherek, Andreas
    Luk, Wayne
    2024 IEEE 35TH INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS, ASAP 2024, 2024, : 107 - 115