Neural orientation distribution fields for estimation and uncertainty quantification in diffusion MRI

被引:3
|
作者
Consagra, William [1 ]
Ning, Lipeng [1 ]
Rathi, Yogesh [1 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Psychiat Neuroimaging Lab, 399 Revolut Dr, Boston, MA 02215 USA
关键词
Uncertainty quantification; Deep learning; Neural field; Diffusion MRI; Functional data analysis; MAGNETIC-RESONANCE DATA; TRACTOGRAPHY; NOISE; VALIDATION; VISUALIZATION; COMPLEX; PHANTOM;
D O I
10.1016/j.media.2024.103105
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Inferring brain connectivity and structure in -vivo requires accurate estimation of the orientation distribution function (ODF), which encodes key local tissue properties. However, estimating the ODF from diffusion MRI (dMRI) signals is a challenging inverse problem due to obstacles such as significant noise, high -dimensional parameter spaces, and sparse angular measurements. In this paper, we address these challenges by proposing a novel deep -learning based methodology for continuous estimation and uncertainty quantification of the spatially varying ODF field. We use a neural field (NF) to parameterize a random series representation of the latent ODFs, implicitly modeling the often ignored but valuable spatial correlation structures in the data, and thereby improving efficiency in sparse and noisy regimes. An analytic approximation to the posterior predictive distribution is derived which can be used to quantify the uncertainty in the ODF estimate at any spatial location, avoiding the need for expensive resampling-based approaches that are typically employed for this purpose. We present empirical evaluations on both synthetic and real in -vivo diffusion data, demonstrating the advantages of our method over existing approaches.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Axon diameter index estimation independent of fiber orientation distribution using high-gradient diffusion MRI
    Fan, Qiuyun
    Nummenmaa, Aapo
    Witzel, Thomas
    Ohringer, Ned
    Tian, Qiyuan
    Setsompop, Kawin
    Klawiter, Eric C.
    Rosen, Bruce R.
    Wald, Lawrence L.
    Huang, Susie Y.
    NEUROIMAGE, 2020, 222
  • [22] Uncertainty quantification in neural-network based pain intensity estimation
    Ozek, Burcu
    Lu, Zhenyuan
    Radhakrishnan, Srinivasan
    Kamarthi, Sagar
    PLOS ONE, 2024, 19 (08):
  • [23] Structured sparsity for spatially coherent fibre orientation estimation in diffusion MRI
    Auria, A.
    Daducci, A.
    Thiran, J. -P.
    Wiaux, Y.
    NEUROIMAGE, 2015, 115 : 245 - 255
  • [24] Optimal imaging parameters for fiber-orientation estimation in diffusion MRI
    Alexander, DC
    Barker, GJ
    NEUROIMAGE, 2005, 27 (02) : 357 - 367
  • [25] Bayesian MRI reconstruction with joint uncertainty estimation using diffusion models
    Luo, Guanxiong
    Blumenthal, Moritz
    Heide, Martin
    Uecker, Martin
    MAGNETIC RESONANCE IN MEDICINE, 2023, 90 (01) : 295 - 311
  • [26] Estimation of fiber orientation and spin density distribution by diffusion deconvolution
    Yeh, Fang-Cheng
    Wedeen, Van Jay
    Tseng, Wen-Yih Isaac
    NEUROIMAGE, 2011, 55 (03) : 1054 - 1062
  • [27] TOTAL VARIATION AND WAVELET REGULARIZATION OF ORIENTATION DISTRIBUTION FUNCTIONS IN DIFFUSION MRI
    Ouyang, Yuyuan
    Chen, Yunmei
    Wu, Ying
    INVERSE PROBLEMS AND IMAGING, 2013, 7 (02) : 565 - 583
  • [28] Estimating fiber orientation distribution from diffusion MRI with spherical needlets
    Yan, Hao
    Carmichael, Owen
    Paul, Debashis
    Peng, Jie
    MEDICAL IMAGE ANALYSIS, 2018, 46 : 57 - 72
  • [29] Diffusion MRI Fiber Orientation Distribution Function Estimation Using Voxel-Wise Spherical U-Net
    Sedlar, Sara
    Papadopoulo, Theodore
    Deriche, Rachid
    Deslauriers-Gauthier, Samuel
    COMPUTATIONAL DIFFUSION MRI, 2021, : 95 - 106
  • [30] Estimation of the uncertainty of the quantification limit
    Badocco, Denis
    Lavagnini, Irma
    Mondin, Andrea
    Pastore, Paolo
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2014, 96 : 8 - 11