Neural orientation distribution fields for estimation and uncertainty quantification in diffusion MRI

被引:3
|
作者
Consagra, William [1 ]
Ning, Lipeng [1 ]
Rathi, Yogesh [1 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Psychiat Neuroimaging Lab, 399 Revolut Dr, Boston, MA 02215 USA
关键词
Uncertainty quantification; Deep learning; Neural field; Diffusion MRI; Functional data analysis; MAGNETIC-RESONANCE DATA; TRACTOGRAPHY; NOISE; VALIDATION; VISUALIZATION; COMPLEX; PHANTOM;
D O I
10.1016/j.media.2024.103105
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Inferring brain connectivity and structure in -vivo requires accurate estimation of the orientation distribution function (ODF), which encodes key local tissue properties. However, estimating the ODF from diffusion MRI (dMRI) signals is a challenging inverse problem due to obstacles such as significant noise, high -dimensional parameter spaces, and sparse angular measurements. In this paper, we address these challenges by proposing a novel deep -learning based methodology for continuous estimation and uncertainty quantification of the spatially varying ODF field. We use a neural field (NF) to parameterize a random series representation of the latent ODFs, implicitly modeling the often ignored but valuable spatial correlation structures in the data, and thereby improving efficiency in sparse and noisy regimes. An analytic approximation to the posterior predictive distribution is derived which can be used to quantify the uncertainty in the ODF estimate at any spatial location, avoiding the need for expensive resampling-based approaches that are typically employed for this purpose. We present empirical evaluations on both synthetic and real in -vivo diffusion data, demonstrating the advantages of our method over existing approaches.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] NONLINEAR DIFFUSION FOR ORIENTATION ESTIMATION
    Shao Xiaofang Sun Jixiang Chen Haixin (College of Electrical Science and Engineering
    Journal of Electronics(China), 2006, (04) : 610 - 613
  • [42] NONLINEAR DIFFUSION FOR ORIENTATION ESTIMATION
    Shao Xiaofang Sun Jixiang Chen Haixin College of Electrical Science and Engineering National University of Defense Technology Changsha China
    Journal of Electronics, 2006, (04) : 610 - 613
  • [43] Uncertainty quantification in estimation of extreme environments
    Jones, Matthew
    Hansen, Hans Fabricius
    Zeeberg, Allan Rod
    Randell, David
    Jonathan, Philip
    COASTAL ENGINEERING, 2018, 141 : 36 - 51
  • [44] A review of uncertainty quantification for density estimation
    McDonald, Shaun
    Campbell, David
    STATISTICS SURVEYS, 2021, 15 : 1 - 71
  • [45] Uncertainty Quantification in Mineral Resource Estimation
    Lindi, Oltingey Tuya
    Aladejare, Adeyemi Emman
    Ozoji, Toochukwu Malachi
    Ranta, Jukka-Pekka
    NATURAL RESOURCES RESEARCH, 2024, 33 (06) : 2503 - 2526
  • [46] Uncertainty quantification of fiber orientation distribution measurements for long-fiber-reinforced thermoplastic composites
    Sharma, Bhisham N.
    Naragani, Diwakar
    Nguyen, Ba Nghiep
    Tucker, Charles L.
    Sangid, Michael D.
    JOURNAL OF COMPOSITE MATERIALS, 2018, 52 (13) : 1781 - 1797
  • [47] AUA-dE: An Adaptive Uncertainty Guided Attention for Diffusion MRI Models Estimation
    Zheng, Tianshu
    Ba, Ruicheng
    Wang, Xiaoli
    Ye, Chuyang
    Wu, Dan
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VIII, 2023, 14227 : 142 - 151
  • [48] Uncertainty Quantification for Markov Random Fields\ast
    Birmpa, Panagiota
    Katsoulakis, Markos A.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (04): : 1457 - 1498
  • [49] Learning to estimate the fiber orientation distribution function from diffusion-weighted MRI
    Karimi, Davood
    Vasung, Lana
    Jaimes, Camilo
    Machado-Rivas, Fedel
    Warfield, Simon K.
    Gholipour, Ali
    NEUROIMAGE, 2021, 239
  • [50] Fiber orientation distribution from diffusion MRI: Effects of inaccurate response function calibration
    Guo, Fenghua
    Tax, Chantal M. W.
    De Luca, Alberto
    Viergever, Max A.
    Heemskerk, Anneriet
    Leemans, Alexander
    JOURNAL OF NEUROIMAGING, 2021, 31 (06) : 1082 - 1098