Efficient DCE-MRI Parameter and Uncertainty Estimation Using a Neural Network

被引:18
|
作者
Bliesener, Yannick [1 ]
Acharya, Jay [2 ]
Nayak, Krishna S. [1 ]
机构
[1] Univ Southern Calif, Dept Elect & Comp Engn, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Keck Sch Med, Dept Radiol, Los Angeles, CA 90033 USA
基金
美国国家卫生研究院;
关键词
Quantitative imaging; DCE MRI; parameter estimation; uncertainty estimation; CONTRAST-ENHANCED MRI; ARTERIAL INPUT FUNCTION; PHARMACOKINETIC PARAMETERS; BAYESIAN-ESTIMATION; BREAST-CANCER; MODELS; BRAIN; BLOOD; TIME; REPRODUCIBILITY;
D O I
10.1109/TMI.2019.2953901
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Quantitative DCE-MRI provides voxel-wise estimates of tracer-kinetic parameters that are valuable in the assessment of health and disease. These maps suffer from many known sources of variability. This variability is expensive to compute using current methods, and is typically not reported. Here, we demonstrate a novel approach for simultaneous estimation of tracer-kinetic parameters and their uncertainty due to intrinsic characteristics of the tracer-kinetic model, with very low computation time. We train and use a neural network to estimate the approximate joint posterior distribution of tracer-kinetic parameters. Uncertainties are estimated for each voxel and are specific to the patient, exam, and lesion. We demonstrate the methods' ability to produce accurate tracer-kinetic maps. We compare predicted parameter ranges with uncertainties introduced by noise and by differences in post-processing in a digital reference object. The predicted parameter ranges correlate well with tracer-kinetic parameter ranges observed across different noise realizations and regression algorithms. We also demonstrate the value of this approach to differentiate significant from insignificant changes in brain tumor pharmacokinetics over time. This is achieved by enforcing consistency in resolving model singularities in the applied tracer-kinetic model.
引用
收藏
页码:1712 / 1723
页数:12
相关论文
共 50 条
  • [1] An artificial neural network for GFR estimation in the DCE-MRI studies of the kidneys
    Strzelecki, Michal
    Klepaczko, Artur
    Muszelska, Martyna
    Eikefjord, Eli
    Rorvik, Jarle
    Lundervold, Arvid
    2018 SIGNAL PROCESSING: ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA), 2018, : 286 - 291
  • [2] Deep learning DCE-MRI parameter estimation: Application in pancreatic cancer
    Ottens, Tim
    Barbieri, Sebastiano
    Orton, Matthew R.
    Klaassen, Remy
    van Laarhoven, Hanneke W. M.
    Crezee, Hans
    Nederveen, Aart J.
    Zhen, Xiantong
    Gurney-Champion, Oliver J.
    MEDICAL IMAGE ANALYSIS, 2022, 80
  • [3] A Multi-Layer Perceptron Network for Perfusion Parameter Estimation in DCE-MRI Studies of the Healthy Kidney
    Klepaczko, Artur
    Strzelecki, Michal
    Kociolek, Marcin
    Eikefjord, Eli
    Lundervold, Arvid
    APPLIED SCIENCES-BASEL, 2020, 10 (16):
  • [4] In vivo estimation of glomerular filtration in the kidney using DCE-MRI
    Hodneland, Erlend
    Kjorstad, Asmund
    Andersen, Erling
    Monssen, Jan Ankar
    Lundervold, Arvid
    Rorvik, Jarle
    Munthe-Kaas, Antonella
    PROCEEDINGS OF THE 7TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA 2011), 2011, : 755 - 761
  • [5] Imaging angiogenesis using DCE-MRI
    Jayson, G.
    EJC SUPPLEMENTS, 2006, 4 (12): : 139 - 139
  • [6] AUTOMATIC RENAL SEGMENTATION IN DCE-MRI USING CONVOLUTIONAL NEURAL NETWORKS
    Haghighi, Marzieh
    Warfield, Simon K.
    Kurugol, Sila
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1534 - 1537
  • [7] An analysis of the pharmacokinetic parameter ratios in DCE-MRI using the reference region model
    Lee, Joonsang
    Platt, Simon
    Kent, Marc
    Zhao, Qun
    MAGNETIC RESONANCE IMAGING, 2012, 30 (01) : 26 - 35
  • [8] DCE-MRI pharmacokinetic parameter maps for cervical carcinoma prediction
    Shao, Jianbo
    Zhang, Zhuo
    Liu, Huiying
    Song, Ying
    Yan, Zhihan
    Wang, Xue
    Hou, Zujun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 118
  • [9] Blind estimation of pharmacokinetic parameters in cardiac DCE-MRI
    Jacob Fluckiger
    Matthias Schabel
    Edward DiBella
    Journal of Cardiovascular Magnetic Resonance, 12 (Suppl 1)
  • [10] Hybrid feature fusion neural network integrating transformer for DCE-MRI super resolution
    Wang, Shanshan
    Liu, Jiaye
    Wan, Bolun
    Li, Wei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86