Efficient DCE-MRI Parameter and Uncertainty Estimation Using a Neural Network

被引:18
|
作者
Bliesener, Yannick [1 ]
Acharya, Jay [2 ]
Nayak, Krishna S. [1 ]
机构
[1] Univ Southern Calif, Dept Elect & Comp Engn, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Keck Sch Med, Dept Radiol, Los Angeles, CA 90033 USA
基金
美国国家卫生研究院;
关键词
Quantitative imaging; DCE MRI; parameter estimation; uncertainty estimation; CONTRAST-ENHANCED MRI; ARTERIAL INPUT FUNCTION; PHARMACOKINETIC PARAMETERS; BAYESIAN-ESTIMATION; BREAST-CANCER; MODELS; BRAIN; BLOOD; TIME; REPRODUCIBILITY;
D O I
10.1109/TMI.2019.2953901
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Quantitative DCE-MRI provides voxel-wise estimates of tracer-kinetic parameters that are valuable in the assessment of health and disease. These maps suffer from many known sources of variability. This variability is expensive to compute using current methods, and is typically not reported. Here, we demonstrate a novel approach for simultaneous estimation of tracer-kinetic parameters and their uncertainty due to intrinsic characteristics of the tracer-kinetic model, with very low computation time. We train and use a neural network to estimate the approximate joint posterior distribution of tracer-kinetic parameters. Uncertainties are estimated for each voxel and are specific to the patient, exam, and lesion. We demonstrate the methods' ability to produce accurate tracer-kinetic maps. We compare predicted parameter ranges with uncertainties introduced by noise and by differences in post-processing in a digital reference object. The predicted parameter ranges correlate well with tracer-kinetic parameter ranges observed across different noise realizations and regression algorithms. We also demonstrate the value of this approach to differentiate significant from insignificant changes in brain tumor pharmacokinetics over time. This is achieved by enforcing consistency in resolving model singularities in the applied tracer-kinetic model.
引用
收藏
页码:1712 / 1723
页数:12
相关论文
共 50 条
  • [31] Blind deconvolution estimation of an arterial input function for small animal DCE-MRI
    Jirik, Radovan
    Taxt, Torfinn
    Macicek, Ondrej
    Bartos, Michal
    Kratochvila, Jiri
    Soucek, Karel
    Drazanova, Eva
    Kratka, Lucie
    Hampl, Ales
    Starcuk, Zenon, Jr.
    MAGNETIC RESONANCE IMAGING, 2019, 62 : 46 - 56
  • [32] An analysis of the uncertainty and bias in DCE-MRI measurements using the spoiled gradient-recalled echo pulse sequence
    Subashi, Ergys
    Choudhury, Kingshuk R.
    Johnson, G. Allan
    MEDICAL PHYSICS, 2014, 41 (03)
  • [33] Artificial Neural Networks approach to pharmacokinetic model selection in DCE-MRI studies
    Mohammadian-Behbahani, Mohammad-Reza
    Kamali-Asl, Ali-Reza
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2016, 32 (12): : 1543 - 1550
  • [34] Optimizing functional parameter accuracy for breath-hold DCE-MRI of liver tumours
    Orton, Matthew R.
    Miyazaki, Keiko
    Koh, Dow-Mu
    Collins, David J.
    Hawkes, David J.
    Atkinson, David
    Leach, Martin O.
    PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (07): : 2197 - 2215
  • [35] Robust estimation of hemo-dynamic parameters in traditional DCE-MRI models
    Hansen, Mikkel B.
    Tietze, Anna
    Haack, Soren
    Kallehauge, Jesper
    Mikkelsen, Irene K.
    Ostergaard, Leif
    Mouridsen, Kim
    PLOS ONE, 2019, 14 (01):
  • [36] Joint estimation of enhancement field sequence and deformation field of breast DCE-MRI
    Yu, Li-Ling
    Yang, Wei
    Lu, Zhen-Tai
    Feng, Qian-Jin
    Chen, Wu-Fan
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (08): : 1509 - 1514
  • [37] Revisiting DCE-MRI Classification of Prostate Tissue Using Descriptive Signal Enhancement Features Derived From DCE-MRI Acquisition With High Spatiotemporal Resolution
    Breit, Hanns C.
    Block, Tobias K.
    Winkel, David J.
    Gehweiler, Julian E.
    Glessgen, Carl G.
    Seifert, Helge
    Wetterauer, Christian
    Boll, Daniel T.
    Heye, Tobias J.
    INVESTIGATIVE RADIOLOGY, 2021, 56 (09) : 553 - 562
  • [38] Pharmacokinetic perfusion curves estimation for liver tumor diagnosis from DCE-MRI
    Caldeira, Liliana L.
    Sanches, Joao M.
    IMAGE ANALYSIS AND RECOGNITION, PROCEEDINGS, 2008, 5112 : 789 - 797
  • [39] Tumor classification using perfusion volume fractions in breast DCE-MRI
    Lee, Sang Ho
    Kim, Jong Hyo
    Park, Jeong Seon
    Park, Sang Joon
    Jung, Yun Sub
    Song, Jung Joo
    Moon, Woo Kyung
    MEDICAL IMAGING 2008: COMPUTER-AIDED DIAGNOSIS, PTS 1 AND 2, 2008, 6915
  • [40] Quantitative Hepatic Perfusion Modeling Using DCE-MRI With Sequential Breathholds
    Bultman, Eric M.
    Brodsky, Ethan K.
    Horng, Debra E.
    Irarrazaval, Pablo
    Schelman, William R.
    Block, Walter F.
    Reeder, Scott B.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2014, 39 (04) : 853 - 865