Efficient DCE-MRI Parameter and Uncertainty Estimation Using a Neural Network

被引:18
|
作者
Bliesener, Yannick [1 ]
Acharya, Jay [2 ]
Nayak, Krishna S. [1 ]
机构
[1] Univ Southern Calif, Dept Elect & Comp Engn, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Keck Sch Med, Dept Radiol, Los Angeles, CA 90033 USA
基金
美国国家卫生研究院;
关键词
Quantitative imaging; DCE MRI; parameter estimation; uncertainty estimation; CONTRAST-ENHANCED MRI; ARTERIAL INPUT FUNCTION; PHARMACOKINETIC PARAMETERS; BAYESIAN-ESTIMATION; BREAST-CANCER; MODELS; BRAIN; BLOOD; TIME; REPRODUCIBILITY;
D O I
10.1109/TMI.2019.2953901
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Quantitative DCE-MRI provides voxel-wise estimates of tracer-kinetic parameters that are valuable in the assessment of health and disease. These maps suffer from many known sources of variability. This variability is expensive to compute using current methods, and is typically not reported. Here, we demonstrate a novel approach for simultaneous estimation of tracer-kinetic parameters and their uncertainty due to intrinsic characteristics of the tracer-kinetic model, with very low computation time. We train and use a neural network to estimate the approximate joint posterior distribution of tracer-kinetic parameters. Uncertainties are estimated for each voxel and are specific to the patient, exam, and lesion. We demonstrate the methods' ability to produce accurate tracer-kinetic maps. We compare predicted parameter ranges with uncertainties introduced by noise and by differences in post-processing in a digital reference object. The predicted parameter ranges correlate well with tracer-kinetic parameter ranges observed across different noise realizations and regression algorithms. We also demonstrate the value of this approach to differentiate significant from insignificant changes in brain tumor pharmacokinetics over time. This is achieved by enforcing consistency in resolving model singularities in the applied tracer-kinetic model.
引用
收藏
页码:1712 / 1723
页数:12
相关论文
共 50 条
  • [21] Estimation of pharmacokinetic parameters from DCE-MRI by extracting long and short time-dependent features using an LSTM network
    Zou, Jiaren
    Balter, James M.
    Cao, Yue
    MEDICAL PHYSICS, 2020, 47 (08) : 3447 - 3457
  • [22] ROBUST ESTIMATION OF PHARMACOKINETIC PARAMETERS IN DCE-MRI ANALYSIS OF RECTAL TUMOURS
    Tanner, L. N.
    Hughes, N. P.
    Brady, Michael
    Anderson, M.
    Gleeson, F. V.
    2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 69 - +
  • [23] The Akaike information criterion in DCE-MRI: Does it improve the haemodynamic parameter estimates?
    Luypaert, Robert
    Ingrisch, Michael
    Sourbron, Steven
    de Mey, Johan
    PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (11): : 3609 - 3628
  • [24] Prediction of breast cancer molecular subtypes on DCE-MRI using convolutional neural network with transfer learning between two centers
    Yang Zhang
    Jeon-Hor Chen
    Yezhi Lin
    Siwa Chan
    Jiejie Zhou
    Daniel Chow
    Peter Chang
    Tiffany Kwong
    Dah-Cherng Yeh
    Xinxin Wang
    Ritesh Parajuli
    Rita S. Mehta
    Meihao Wang
    Min-Ying Su
    European Radiology, 2021, 31 : 2559 - 2567
  • [25] Spatially regularized estimation of the tissue homogeneity model parameters in DCE-MRI using proximal minimization
    Bartos, Michal
    Rajmic, Pavel
    Sorel, Michal
    Mangova, Marie
    Keunen, Olivier
    Jirik, Radovan
    MAGNETIC RESONANCE IN MEDICINE, 2019, 82 (06) : 2257 - 2272
  • [26] Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI
    Orton, Matthew R.
    d'Arcy, James A.
    Walker-Samuel, Simon
    Hawkes, David J.
    Atkinson, David
    Collins, David J.
    Leach, Martin O.
    PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (05): : 1225 - 1239
  • [27] Prediction of breast cancer molecular subtypes on DCE-MRI using convolutional neural network with transfer learning between two centers
    Zhang, Yang
    Chen, Jeon-Hor
    Lin, Yezhi
    Chan, Siwa
    Zhou, Jiejie
    Chow, Daniel
    Chang, Peter
    Kwong, Tiffany
    Yeh, Dah-Cherng
    Wang, Xinxin
    Parajuli, Ritesh
    Mehta, Rita S.
    Wang, Meihao
    Su, Min-Ying
    EUROPEAN RADIOLOGY, 2021, 31 (04) : 2559 - 2567
  • [28] Response monitoring of breast cancer on DCE-MRI using convolutional neural network-generated seed points and constrained volume growing
    van der Velden, Bas H. M.
    de Vos, Bob D.
    Loo, Claudette E.
    Kuijf, Hugo J.
    Isgum, Ivana
    Gilhuijs, Kenneth G. A.
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [29] Aircraft parameter estimation using neural network
    Rajesh, A.K.
    Das, S.
    Sinha, M.
    Journal of the Institution of Engineers (India): Aerospace Engineering Journal, 2010, 91 (MAY): : 3 - 9
  • [30] Improving Hypoxia Map Estimation by Using Model-Free Classification Techniques in DCE-MRI Images
    Venianaki, M.
    Kontopodis, E.
    Nikiforaki, K.
    de Bree, E.
    Maris, T.
    Karantanas, A.
    Salvetti, O.
    Marias, K.
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2016, : 183 - 188