Efficient DCE-MRI Parameter and Uncertainty Estimation Using a Neural Network

被引:18
|
作者
Bliesener, Yannick [1 ]
Acharya, Jay [2 ]
Nayak, Krishna S. [1 ]
机构
[1] Univ Southern Calif, Dept Elect & Comp Engn, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Keck Sch Med, Dept Radiol, Los Angeles, CA 90033 USA
基金
美国国家卫生研究院;
关键词
Quantitative imaging; DCE MRI; parameter estimation; uncertainty estimation; CONTRAST-ENHANCED MRI; ARTERIAL INPUT FUNCTION; PHARMACOKINETIC PARAMETERS; BAYESIAN-ESTIMATION; BREAST-CANCER; MODELS; BRAIN; BLOOD; TIME; REPRODUCIBILITY;
D O I
10.1109/TMI.2019.2953901
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Quantitative DCE-MRI provides voxel-wise estimates of tracer-kinetic parameters that are valuable in the assessment of health and disease. These maps suffer from many known sources of variability. This variability is expensive to compute using current methods, and is typically not reported. Here, we demonstrate a novel approach for simultaneous estimation of tracer-kinetic parameters and their uncertainty due to intrinsic characteristics of the tracer-kinetic model, with very low computation time. We train and use a neural network to estimate the approximate joint posterior distribution of tracer-kinetic parameters. Uncertainties are estimated for each voxel and are specific to the patient, exam, and lesion. We demonstrate the methods' ability to produce accurate tracer-kinetic maps. We compare predicted parameter ranges with uncertainties introduced by noise and by differences in post-processing in a digital reference object. The predicted parameter ranges correlate well with tracer-kinetic parameter ranges observed across different noise realizations and regression algorithms. We also demonstrate the value of this approach to differentiate significant from insignificant changes in brain tumor pharmacokinetics over time. This is achieved by enforcing consistency in resolving model singularities in the applied tracer-kinetic model.
引用
收藏
页码:1712 / 1723
页数:12
相关论文
共 50 条
  • [41] Joint-phase attention network for breast cancer segmentation in DCE-MRI
    Huang, Rian
    Xu, Zeyan
    Xie, Yu
    Wu, Hong
    Li, Zixian
    Cui, Yanfen
    Huo, Yingwen
    Han, Chu
    Yang, Xiaotang
    Liu, Zaiyi
    Wang, Yi
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 224
  • [42] Combination of DCE-MRI and NME-DWI via Deep Neural Network for Predicting Breast Cancer Molecular Subtypes
    Ba, Zhi-Chang
    Zhang, Hong-Xia
    Liu, Ao-Yu
    Zhou, Xin-Xiang
    Liu, Lu
    Wang, Xin-Yi
    Nanding, Abiyasi
    Sang, Xi-Qiao
    Kuai, Zi-Xiang
    CLINICAL BREAST CANCER, 2024, 24 (05) : E417 - E427
  • [43] Renal DCE-MRI Model Selection Using Bayesian Probability Theory
    Beeman, Scott C.
    Osei-Owusu, Patrick
    Duan, Chong
    Engelbach, John
    Bretthorst, G. Larry
    Ackerman, Joseph J. H.
    Blumer, Kendall J.
    Garbow, Joel R.
    TOMOGRAPHY, 2015, 1 (01) : 61 - 68
  • [44] Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI
    Zhou, Lei
    Zhang, Yuzhong
    Zhang, Jiadong
    Qian, Xuejun
    Gong, Chen
    Sun, Kun
    Ding, Zhongxiang
    Wang, Xing
    Li, Zhenhui
    Liu, Zaiyi
    Shen, Dinggang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2025, 44 (01) : 244 - 258
  • [45] INVESTIGATION OF WIGGLESWORTH INTRAUTERINE GROWTH RESTRICTION MODEL USING DCE-MRI
    Dap, Matthieu
    Beaumont, Marine
    Morel, Olivier
    Tarrade, Anne
    Palmero-Soler, Enersto
    Ramdhani, Ikrame
    Bertholdt, Charline
    PLACENTA, 2019, 83 : E28 - E28
  • [46] Functionally Guided NTCP Modeling Using DCE-MRI in Hepatocellular Carcinoma
    Velten, C.
    Gjini, M.
    Kabarriti, R.
    Brodin, N. P.
    Tome, W. A.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : E489 - E490
  • [47] Quantifying Perfusion Properties with DCE-MRI Using a Dictionary Matching Approach
    Satyam Ghodasara
    Yong Chen
    Shivani Pahwa
    Mark A. Griswold
    Nicole Seiberlich
    Katherine L. Wright
    Vikas Gulani
    Scientific Reports, 10
  • [48] DCE-MRI interpolation using learned transformations for breast lesions classification
    Hongyu Wang
    Cong Gao
    Jun Feng
    Xiaoying Pan
    Di Yang
    Baoying Chen
    Multimedia Tools and Applications, 2021, 80 : 26237 - 26254
  • [49] Quantifying Perfusion Properties with DCE-MRI Using a Dictionary Matching Approach
    Ghodasara, Satyam
    Chen, Yong
    Pahwa, Shivani
    Griswold, Mark A.
    Seiberlich, Nicole
    Wright, Katherine L.
    Gulani, Vikas
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [50] Assessing Hepatocellular Carcinoma (HCC) Response to SBRT Using DCE-MRI
    Yuan, Y.
    Buckstein, M.
    Chao, M.
    Rosenzweig, K.
    Lo, Y.
    MEDICAL PHYSICS, 2016, 43 (06) : 3829 - 3829