Neural orientation distribution fields for estimation and uncertainty quantification in diffusion MRI

被引:3
|
作者
Consagra, William [1 ]
Ning, Lipeng [1 ]
Rathi, Yogesh [1 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Psychiat Neuroimaging Lab, 399 Revolut Dr, Boston, MA 02215 USA
关键词
Uncertainty quantification; Deep learning; Neural field; Diffusion MRI; Functional data analysis; MAGNETIC-RESONANCE DATA; TRACTOGRAPHY; NOISE; VALIDATION; VISUALIZATION; COMPLEX; PHANTOM;
D O I
10.1016/j.media.2024.103105
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Inferring brain connectivity and structure in -vivo requires accurate estimation of the orientation distribution function (ODF), which encodes key local tissue properties. However, estimating the ODF from diffusion MRI (dMRI) signals is a challenging inverse problem due to obstacles such as significant noise, high -dimensional parameter spaces, and sparse angular measurements. In this paper, we address these challenges by proposing a novel deep -learning based methodology for continuous estimation and uncertainty quantification of the spatially varying ODF field. We use a neural field (NF) to parameterize a random series representation of the latent ODFs, implicitly modeling the often ignored but valuable spatial correlation structures in the data, and thereby improving efficiency in sparse and noisy regimes. An analytic approximation to the posterior predictive distribution is derived which can be used to quantify the uncertainty in the ODF estimate at any spatial location, avoiding the need for expensive resampling-based approaches that are typically employed for this purpose. We present empirical evaluations on both synthetic and real in -vivo diffusion data, demonstrating the advantages of our method over existing approaches.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Estimating Neural Orientation Distribution Fields on High Resolution Diffusion MRI Scans
    Dwedari, Mohammed Munzer
    Consagra, William
    Mueller, Philip
    Turgut, Oezguen
    Rueckert, Daniel
    Rathi, Yogesh
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT VII, 2024, 15007 : 307 - 317
  • [2] Geodesic Tubes for Uncertainty Quantification in Diffusion MRI
    Sengers, Rick
    Florack, Luc
    Fuster, Andrea
    INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2021, 2021, 12729 : 279 - 290
  • [3] Uncertainty quantification of parenchymal tracer distribution using random diffusion and convective velocity fields
    Matteo Croci
    Vegard Vinje
    Marie E. Rognes
    Fluids and Barriers of the CNS, 16
  • [4] Uncertainty quantification of parenchymal tracer distribution using random diffusion and convective velocity fields
    Croci, Matteo
    Vinje, Vegard
    Rognes, Marie E.
    FLUIDS AND BARRIERS OF THE CNS, 2019, 16 (01)
  • [5] Bayesian uncertainty quantification in linear models for diffusion MRI
    Sjolund, Jens
    Eklund, Anders
    Ozarslan, Evren
    Herberthson, Magnus
    Bankestad, Maria
    Knutsson, Hans
    NEUROIMAGE, 2018, 175 : 272 - 285
  • [6] A deep learning approach to multi-fiber parameter estimation and uncertainty quantification in diffusion MRI
    Consagra, William
    Ning, Lipeng
    Rathi, Yogesh
    MEDICAL IMAGE ANALYSIS, 2025, 102
  • [7] Uncertainty Quantification of Neural Reflectance Fields for Underwater Scenes
    Lian, Haojie
    Li, Xinhao
    Chen, Leilei
    Wen, Xin
    Zhang, Mengxi
    Zhang, Jieyuan
    Qu, Yilin
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (02)
  • [8] Bayes' Rays: Uncertainty Quantification for Neural Radiance Fields
    Goli, Lily
    Reading, Cody
    Sellan, Silvia
    Jacobson, Alec
    Tagliasacchi, Andrea
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 20061 - 20070
  • [9] Diffusion MRI Fibre Orientation Distribution Inpainting
    Tang, Zihao
    Wang, Xinyi
    Cabezas, Mariano
    D'Souza, Arkiev
    Calamante, Fernando
    Liu, Dongnan
    Barnett, Michael
    Wang, Chenyu
    Cai, Weidong
    COMPUTATIONAL DIFFUSION MRI (CDMRI 2022), 2022, 13722 : 65 - 76
  • [10] Uncertainty Estimation in Diffusion MRI Using the Nonlocal Bootstrap
    Yap, Pew-Thian
    An, Hongyu
    Chen, Yasheng
    Shen, Dinggang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (08) : 1627 - 1640