Estimating Neural Orientation Distribution Fields on High Resolution Diffusion MRI Scans

被引:0
|
作者
Dwedari, Mohammed Munzer [1 ,2 ]
Consagra, William [1 ]
Mueller, Philip [2 ]
Turgut, Oezguen [2 ]
Rueckert, Daniel [2 ]
Rathi, Yogesh [1 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Psychiat Neuroimaging Lab, Boston, MA 02115 USA
[2] Tech Univ Munich, Munich, Germany
关键词
Orientation Distribution Function; Implicit Neural Representation; Diffusion MRI; MAGNETIC-RESONANCE DATA;
D O I
10.1007/978-3-031-72104-5_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Orientation Distribution Function (ODF) characterizes key brain microstructural properties and plays an important role in understanding brain structural connectivity. Recent works introduced Implicit Neural Representation (INR) based approaches to form a spatially aware continuous estimate of the ODF field and demonstrated promising results in key tasks of interest when compared to conventional discrete approaches. However, traditional INR methods face difficulties when scaling to large-scale images, such as modern ultra-high-resolution MRI scans, posing challenges in learning fine structures as well as inefficiencies in training and inference speed. In this work, we propose HashEnc, a grid-hash-encoding-based estimation of the ODF field and demonstrate its effectiveness in retaining structural and textural features. We show that HashEnc achieves a 10% enhancement in image quality while requiring 3x less computational resources than current methods. Our code can be found at https://github.com/MunzerDw/NODF-HashEnc.
引用
收藏
页码:307 / 317
页数:11
相关论文
共 50 条
  • [1] Neural orientation distribution fields for estimation and uncertainty quantification in diffusion MRI
    Consagra, William
    Ning, Lipeng
    Rathi, Yogesh
    MEDICAL IMAGE ANALYSIS, 2024, 93
  • [2] High Resolution Ex Vivo Diffusion Tensor Distribution MRI of Neural Tissue
    Magdoom, Kulam Najmudeen
    Komlosh, Michal E.
    Saleem, Kadharbatcha
    Gasbarra, Dario
    Basser, Peter J.
    FRONTIERS IN PHYSICS, 2022, 10
  • [3] Estimating fiber orientation distribution from diffusion MRI with spherical needlets
    Yan, Hao
    Carmichael, Owen
    Paul, Debashis
    Peng, Jie
    MEDICAL IMAGE ANALYSIS, 2018, 46 : 57 - 72
  • [4] Diffusion MRI Fibre Orientation Distribution Inpainting
    Tang, Zihao
    Wang, Xinyi
    Cabezas, Mariano
    D'Souza, Arkiev
    Calamante, Fernando
    Liu, Dongnan
    Barnett, Michael
    Wang, Chenyu
    Cai, Weidong
    COMPUTATIONAL DIFFUSION MRI (CDMRI 2022), 2022, 13722 : 65 - 76
  • [5] A Riemannian Approach for Estimating Orientation Distribution Function (ODF) Images from High-Angular Resolution Diffusion Imaging (HARDI)
    Krajsek, Kai
    Scharr, Hanno
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 1019 - 1026
  • [6] Fibertract segmentation in position orientation space from high angular resolution diffusion MRI
    Hagmann, Patric
    Jonasson, Lisa
    Deffieux, Thomas
    Meuli, Reto
    Thiran, Jean-Philippe
    Wedeen, Van J.
    NEUROIMAGE, 2006, 32 (02) : 665 - 675
  • [7] High-resolution diffusion MRI
    Haldar, Justin P.
    Liang, Zhi-Pei
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 311 - 314
  • [8] Diffusion MRI Registration Using Orientation Distribution Functions
    Geng, Xiujuan
    Ross, Thomas J.
    Zhan, Wang
    Gu, Hong
    Chao, Yi-Ping
    Lin, Ching-Po
    Christensen, Gary E.
    Schuff, Norbert
    Yang, Yihong
    INFORMATION PROCESSING IN MEDICAL IMAGING, PROCEEDINGS, 2009, 5636 : 626 - +
  • [9] Diffusion MRI registration using orientation distribution functions
    National Institute on Drug Abuse, NIH, United States
    不详
    不详
    不详
    不详
    Lect. Notes Comput. Sci., (626-637):
  • [10] HIGH RESOLUTION ORIENTATION DISTRIBUTION FUNCTION
    Schmidt, Soren
    Gade-Nielsen, Nicolai Fog
    Hostergaard, Martin
    Dammann, Bernd
    Kazantsev, Ivan G.
    TEXTURES OF MATERIALS, PTS 1 AND 2, 2012, 702-703 : 536 - +