Data-driven models and digital twins for sustainable combustion technologies

被引:7
|
作者
Parente, Alessandro [1 ,2 ,3 ,4 ]
Swaminathan, Nedunchezhian [5 ]
机构
[1] Univ Libre Bruxelles, Ecole Polytech Bruxelles, Aerothermo Mech Dept, Ave Franklin D,Roosevelt 50, B-1050 Brussels, Belgium
[2] WEL Res Inst, Ave Pasteur 6, B-1300 Wavre, Belgium
[3] Univ Libre Bruxelles, Brussels Inst Thermal Fluid Syst & Clean Energy B, B-1050 Ixelles, Belgium
[4] Vrije Univ Brussel, B-1050 Ixelles, Belgium
[5] Univ Cambridge, Dept Engn, Hopkinson Lab, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
PRINCIPAL COMPONENT ANALYSIS; DIRECT NUMERICAL-SIMULATION; GENERATIVE ADVERSARIAL NETWORKS; PROPER ORTHOGONAL DECOMPOSITION; CONVOLUTIONAL NEURAL-NETWORKS; NOX EMISSIONS; TURBULENT; LES; IDENTIFICATION; FRAMEWORK;
D O I
10.1016/j.isci.2024.109349
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We highlight the critical role of data in developing sustainable combustion technologies for industries requiring high -density and localized energy sources. Combustion systems are complex and difficult to predict, and high-fidelity simulations are out of reach for practical systems because of computational cost. Data -driven approaches and artificial intelligence offer promising solutions, enabling renewable synthetic fuels to meet decarbonization goals. We discuss open challenges associated with the availability and fidelity of data, physics -based numerical simulations, and machine learning, focusing on developing digital twins capable of mirroring the behavior of industrial combustion systems and continuously updating based on newly available information.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Data-driven Digital Therapeutics Analytics
    Lee, Uichin
    Jung, Gyuwon
    Park, Sangjun
    Ma, Eun-Yeol
    Kim, Heeyoung
    Lee, Yonggeon
    Noh, Youngtae
    2023 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING, BIGCOMP, 2023, : 386 - 388
  • [42] Data-Driven Solutions for Digital Communications
    Branchevsky, Donna
    Casado, Andres Vila
    Grayver, Eugene
    Belhouchat, Adam
    Baney, Douglas
    Braun, Andrew
    2020 IEEE AEROSPACE CONFERENCE (AEROCONF 2020), 2020,
  • [43] Silicon Technologies and Solutions for the Data-Driven World
    Kim, Kinam
    2015 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE DIGEST OF TECHNICAL PAPERS (ISSCC), 2015, 58 : 8 - 15
  • [44] Central bank digital currencies: Consumer data-driven sustainable operation management policy
    Wang, Zhan-ao
    Samuel, Ribeiro-Navarrete
    Chen, Xiao-qian
    Xu, Bing
    Huang, Wei-lun
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2023, 196
  • [45] Urban scale digital twins in data-driven society: Challenging digital universalism in urban planning decision-making
    Charitonidou, Marianna
    INTERNATIONAL JOURNAL OF ARCHITECTURAL COMPUTING, 2022, 20 (02) : 238 - 253
  • [46] Digital Twin Framework for Aircraft Lifecycle Management Based on Data-Driven Models
    Kabashkin, Igor
    MATHEMATICS, 2024, 12 (19)
  • [47] A Framework for Sustainable and Data-driven Smart Campus
    Kostepen, Zeynep Nur
    Akkol, Ekin
    Dogan, Onur
    Bitim, Semih
    Hiziroglu, Abdulkadir
    PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS (ICEIS), VOL 2, 2020, : 746 - 753
  • [48] Data-driven design of sustainable production networks
    Schuh G.
    Schmitz S.
    Schlosser T.X.
    Janssen B.
    WT Werkstattstechnik, 2023, 113 (04): : 4 - 10
  • [49] Digital twins, big data governance, and sustainable tourism
    Rahmadian, Eko
    Feitosa, Daniel
    Virantina, Yulia
    ETHICS AND INFORMATION TECHNOLOGY, 2023, 25 (04)
  • [50] Digital twins, big data governance, and sustainable tourism
    Eko Rahmadian
    Daniel Feitosa
    Yulia Virantina
    Ethics and Information Technology, 2023, 25