Data-driven models and digital twins for sustainable combustion technologies

被引:7
|
作者
Parente, Alessandro [1 ,2 ,3 ,4 ]
Swaminathan, Nedunchezhian [5 ]
机构
[1] Univ Libre Bruxelles, Ecole Polytech Bruxelles, Aerothermo Mech Dept, Ave Franklin D,Roosevelt 50, B-1050 Brussels, Belgium
[2] WEL Res Inst, Ave Pasteur 6, B-1300 Wavre, Belgium
[3] Univ Libre Bruxelles, Brussels Inst Thermal Fluid Syst & Clean Energy B, B-1050 Ixelles, Belgium
[4] Vrije Univ Brussel, B-1050 Ixelles, Belgium
[5] Univ Cambridge, Dept Engn, Hopkinson Lab, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
PRINCIPAL COMPONENT ANALYSIS; DIRECT NUMERICAL-SIMULATION; GENERATIVE ADVERSARIAL NETWORKS; PROPER ORTHOGONAL DECOMPOSITION; CONVOLUTIONAL NEURAL-NETWORKS; NOX EMISSIONS; TURBULENT; LES; IDENTIFICATION; FRAMEWORK;
D O I
10.1016/j.isci.2024.109349
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We highlight the critical role of data in developing sustainable combustion technologies for industries requiring high -density and localized energy sources. Combustion systems are complex and difficult to predict, and high-fidelity simulations are out of reach for practical systems because of computational cost. Data -driven approaches and artificial intelligence offer promising solutions, enabling renewable synthetic fuels to meet decarbonization goals. We discuss open challenges associated with the availability and fidelity of data, physics -based numerical simulations, and machine learning, focusing on developing digital twins capable of mirroring the behavior of industrial combustion systems and continuously updating based on newly available information.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Special Section on Data-Driven Mechanics and Digital Twins for Ocean Engineering
    Jaiman, Rajeev
    Manuel, Lance
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (06):
  • [12] Explainable Data-Driven Digital Twins for Predicting Battery States in Electric Vehicles
    Njoku, Judith Nkechinyere
    Ifeanyi Nwakanma, Cosmas
    Kim, Dong-Seong
    IEEE ACCESS, 2024, 12 : 83480 - 83501
  • [13] Low-Inertia Microgrid Synchronization Using Data-Driven Digital Twins
    Samadi, Mikhak
    Fattahi, Javad
    IEEE ACCESS, 2024, 12 : 78534 - 78548
  • [14] Recent advances on industrial data-driven energy savings: Digital twins and infrastructures
    Teng, Sin Yong
    Tous, Michal
    Leong, Wei Dong
    How, Bing Shen
    Lam, Hon Loong
    Masa, Vitezslav
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 135
  • [15] Data-Driven Digital Twins in Surgery utilizing Augmented Reality and Machine Learning
    Riedel, Paul
    Riesner, Michael
    Wendt, Karsten
    Assmann, Uwe
    2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 580 - 585
  • [16] Parallel Systems and Digital Twins: A Data-driven Mathematical Representation and Computational Framework
    Zhang J.
    Xu P.-D.
    Wang F.-Y.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (07): : 1346 - 1356
  • [17] Data-Driven Sustainability: Metrics, Digital Technologies, and Governance in Food and Agriculture*
    Hatanaka, Maki
    Konefal, Jason
    Strube, Johann
    Glenna, Leland
    Conner, David
    RURAL SOCIOLOGY, 2022, 87 (01) : 206 - 230
  • [18] Digital technologies and data-driven delay management process for construction projects
    Radman, Kambiz
    Jelodar, Mostafa Babaeian
    Lovreglio, Ruggiero
    Ghazizadeh, Eghbal
    Wilkinson, Suzanne
    FRONTIERS IN BUILT ENVIRONMENT, 2022, 8
  • [19] A journey from mechanistic to data-driven models in process engineering: dimensionality reduction, surrogate and hybrid approaches, and digital twins
    Bizon, Katarzyna
    CHEMICAL AND PROCESS ENGINEERING-NEW FRONTIERS, 2023, 44 (03):
  • [20] Data-driven prediction models for forecasting multistep ahead profiles of mammalian cell culture toward bioprocess digital twins
    Park, Seo-Young
    Kim, Sun-Jong
    Park, Cheol-Hwan
    Kim, Jiyong
    Lee, Dong-Yup
    BIOTECHNOLOGY AND BIOENGINEERING, 2023, 120 (09) : 2494 - 2508