Data-driven models and digital twins for sustainable combustion technologies

被引:7
|
作者
Parente, Alessandro [1 ,2 ,3 ,4 ]
Swaminathan, Nedunchezhian [5 ]
机构
[1] Univ Libre Bruxelles, Ecole Polytech Bruxelles, Aerothermo Mech Dept, Ave Franklin D,Roosevelt 50, B-1050 Brussels, Belgium
[2] WEL Res Inst, Ave Pasteur 6, B-1300 Wavre, Belgium
[3] Univ Libre Bruxelles, Brussels Inst Thermal Fluid Syst & Clean Energy B, B-1050 Ixelles, Belgium
[4] Vrije Univ Brussel, B-1050 Ixelles, Belgium
[5] Univ Cambridge, Dept Engn, Hopkinson Lab, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
PRINCIPAL COMPONENT ANALYSIS; DIRECT NUMERICAL-SIMULATION; GENERATIVE ADVERSARIAL NETWORKS; PROPER ORTHOGONAL DECOMPOSITION; CONVOLUTIONAL NEURAL-NETWORKS; NOX EMISSIONS; TURBULENT; LES; IDENTIFICATION; FRAMEWORK;
D O I
10.1016/j.isci.2024.109349
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We highlight the critical role of data in developing sustainable combustion technologies for industries requiring high -density and localized energy sources. Combustion systems are complex and difficult to predict, and high-fidelity simulations are out of reach for practical systems because of computational cost. Data -driven approaches and artificial intelligence offer promising solutions, enabling renewable synthetic fuels to meet decarbonization goals. We discuss open challenges associated with the availability and fidelity of data, physics -based numerical simulations, and machine learning, focusing on developing digital twins capable of mirroring the behavior of industrial combustion systems and continuously updating based on newly available information.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Data-driven Stellar Models
    Green, Gregory M.
    Rix, Hans-Walter
    Tschesche, Leon
    Finkbeiner, Douglas
    Zucker, Catherine
    Schlafly, Edward F.
    Rybizki, Jan
    Fouesneau, Morgan
    Andrae, Rene
    Speagle, Joshua
    ASTROPHYSICAL JOURNAL, 2021, 907 (01):
  • [32] Data-driven models for predicting the flame spectral behavior in industrial combustion processes
    Pezoa, Jorge E.
    Arias, Luis
    OPTICAL SENSING AND DETECTION II, 2012, 8439
  • [33] Persuading from the Start: Participatory Development of Sustainable Persuasive Data-Driven Technologies in Healthcare
    Keizer, Julia
    Beerlage-de Jong, Nienke
    Al Naiemi, Nashwan
    van Gemert-Pijnen, J. E. W. C.
    PERSUASIVE TECHNOLOGY: DESIGNING FOR FUTURE CHANGE (PERSUASIVE 2020), 2020, 12064 : 113 - 125
  • [34] Perspectives on data-driven models and its potentials in metal forming and blanking technologies
    Mathias Liewald
    Thomas Bergs
    Peter Groche
    Bernd-Arno Behrens
    David Briesenick
    Martina Müller
    Philipp Niemietz
    Christian Kubik
    Felix Müller
    Production Engineering, 2022, 16 : 607 - 625
  • [35] Perspectives on data-driven models and its potentials in metal forming and blanking technologies
    Liewald, Mathias
    Bergs, Thomas
    Groche, Peter
    Behrens, Bernd-Arno
    Briesenick, David
    Mueller, Martina
    Niemietz, Philipp
    Kubik, Christian
    Mueller, Felix
    PRODUCTION ENGINEERING-RESEARCH AND DEVELOPMENT, 2022, 16 (05): : 607 - 625
  • [36] A Five-Step Approach to Planning Data-Driven Digital Twins for Discrete Manufacturing Systems
    Resman, Matevz
    Protner, Jernej
    Simic, Marko
    Herakovic, Niko
    APPLIED SCIENCES-BASEL, 2021, 11 (08):
  • [37] Merging Model-Based and Data-Driven Approaches for Resilient Systems Digital Twins Design
    Campanile, Lelio
    de Biase, Maria Stella
    De Fazio, Roberta
    Di Giovanni, Michele
    Marulli, Fiammetta
    Verde, Laura
    2023 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE, CSR, 2023, : 301 - 306
  • [38] Digital twins and AI transforming healthcare systems through innovation and data-driven decision making
    Oulefki, Adel
    Amira, Abbes
    Foufou, Sebti
    HEALTH AND TECHNOLOGY, 2025, : 299 - 321
  • [39] Construction of digital twin model of engine in-cylinder combustion based on data-driven
    Hu, Deng
    Wang, Hechun
    Yang, Chuanlei
    Wang, Binbin
    Duan, Baoyin
    Wang, Yinyan
    Li, Hucai
    ENERGY, 2024, 293
  • [40] Data mining in process engineering as a key enabler of intelligent digital twins for data-driven optimization of process management
    Krüger M.
    Vogel-Heuser B.
    Land K.
    Grim G.
    Lorenzer J.
    Hanf M.
    VDI Berichte, 2022, 2022 (2399): : 231 - 244