Data-driven models and digital twins for sustainable combustion technologies

被引:7
|
作者
Parente, Alessandro [1 ,2 ,3 ,4 ]
Swaminathan, Nedunchezhian [5 ]
机构
[1] Univ Libre Bruxelles, Ecole Polytech Bruxelles, Aerothermo Mech Dept, Ave Franklin D,Roosevelt 50, B-1050 Brussels, Belgium
[2] WEL Res Inst, Ave Pasteur 6, B-1300 Wavre, Belgium
[3] Univ Libre Bruxelles, Brussels Inst Thermal Fluid Syst & Clean Energy B, B-1050 Ixelles, Belgium
[4] Vrije Univ Brussel, B-1050 Ixelles, Belgium
[5] Univ Cambridge, Dept Engn, Hopkinson Lab, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
PRINCIPAL COMPONENT ANALYSIS; DIRECT NUMERICAL-SIMULATION; GENERATIVE ADVERSARIAL NETWORKS; PROPER ORTHOGONAL DECOMPOSITION; CONVOLUTIONAL NEURAL-NETWORKS; NOX EMISSIONS; TURBULENT; LES; IDENTIFICATION; FRAMEWORK;
D O I
10.1016/j.isci.2024.109349
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We highlight the critical role of data in developing sustainable combustion technologies for industries requiring high -density and localized energy sources. Combustion systems are complex and difficult to predict, and high-fidelity simulations are out of reach for practical systems because of computational cost. Data -driven approaches and artificial intelligence offer promising solutions, enabling renewable synthetic fuels to meet decarbonization goals. We discuss open challenges associated with the availability and fidelity of data, physics -based numerical simulations, and machine learning, focusing on developing digital twins capable of mirroring the behavior of industrial combustion systems and continuously updating based on newly available information.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] An MLOps Framework to Data-Driven Modelling of Digital Twins with an Application to Virtual Test Rigs
    Kruschinski, Denis
    Ngassam, Dylan Tchawou
    Durak, Umut
    Hartmann, Sven
    ADVANCES IN CONCEPTUAL MODELING, ER 2024 WORKSHOPS, 2025, 14932 : 71 - 86
  • [22] Sustainable Business Models through Digital Twins
    Werner, Andreas
    Schuseil, Frauke
    Zimmermann, Nikolas
    Hämmerle, Moritz
    Riedel, Oliver
    WT Werkstattstechnik, 2024, 114 (06): : 276 - 284
  • [23] Civic technologies in data-driven societies
    Jacobsson, Mattias
    Hansson, Karin
    Ho, Hayley
    Normark, Maria
    Lundmark, Sofia
    Tholander, Jakob
    ADJUNCT PROCEEDINGS OF THE 13TH NORDIC CONFERENCE ON HUMAN-COMPUTER INTERACTION, NORDICHI 2024, 2024,
  • [24] Dis/Trust and data-driven technologies
    Duenas-Cid, David
    Calzati, Stefano
    INTERNET POLICY REVIEW, 2023, 12 (04):
  • [25] Numerical Weather Data-Driven Sensor Data Generation for PV Digital Twins: A Hybrid Model Approach
    Lee, Jooseung
    Kang, Jimyung
    Son, Sangwoo
    Oh, Hui-Myoung
    IEEE ACCESS, 2025, 13 : 5009 - 5022
  • [26] Data-driven enabling technologies in soft sensors of modern internal combustion engines: Perspectives
    Li, Ji
    Zhou, Quan
    He, Xu
    Chen, Wan
    Xu, Hongming
    ENERGY, 2023, 272
  • [27] Data-driven physics-based digital twins via a library of component-based reduced-order models
    Kapteyn, M. G.
    Knezevic, D. J.
    Huynh, D. B. P.
    Tran, M.
    Willcox, K. E.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2022, 123 (13) : 2986 - 3003
  • [28] Developing deep learning surrogate models for digital twins in mineral processing - A case study on data-driven multivariate multistep forecasting
    Zeb, Akhtar
    Linnosmaa, Joonas
    Seppi, Mikko
    Saarela, Olli
    MINERALS ENGINEERING, 2024, 216
  • [29] Data-driven optimisation of leadership models during enterprise digital transformation
    Guo, Yuntao
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [30] An Investigation of Unsupervised Data-Driven Models for Internal Combustion Engine Condition Monitoring
    Liang, Xiaoxia
    Fu, Chao
    Sun, Xiuquan
    Duan, Fang
    Mba, David
    Gu, Fengshou
    Ball, Andrew D.
    PROCEEDINGS OF INCOME-VI AND TEPEN 2021: PERFORMANCE ENGINEERING AND MAINTENANCE ENGINEERING, 2023, 117 : 463 - 475