Schrödinger equation as a confluent Heun equation

被引:0
|
作者
Figueiredo, Bartolomeu Donatila Bonorino [1 ]
机构
[1] Ctr Brasileiro Pesquisas Fis CBPF, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil
关键词
CHE; quasiexact solvabbily; exact solutions; Heun equations; polynomial solutions; nonpolynomial solutions; SPHEROIDAL WAVE-EQUATION;
D O I
10.1088/1402-4896/ad3510
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article deals with two classes of quasi-exactly solvable (QES) trigonometric potentials for which the one-dimensional Schr & ouml;dinger equation reduces to a confluent Heun equation (CHE) where the independent variable takes only finite values. Power series for the CHE are used to get polynomial and nonpolynomial eigenfunctions. Polynomials occur only for special sets of parameters and characterize the quasi-exact solvability. Nonpolynomial solutions occur for all admissible values of the parameters (even for values which give polynomials), and are bounded and convergent in the entire range of the independent variable. Moreover, throughout the article we examine other QES trigonometric and hyperbolic potentials. In all cases, for a polynomial solution there is a convergent nonpolynomial solution.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] A large class of bound-state solutions of the Schrödinger equation via Laplace transform of the confluent hypergeometric equation
    P. H. F. Nogueira
    A. S. de Castro
    D. R. M. Pimentel
    Journal of Mathematical Chemistry, 2016, 54 : 1287 - 1295
  • [22] Expansions of the solutions to the confluent Heun equation in terms of the Kummer confluent hypergeometric functions
    Ishkhanyan, T. A.
    Ishkhanyan, A. M.
    AIP ADVANCES, 2014, 4 (08):
  • [23] Pseudorandomness of the Schrödinger Map Equation
    Kumar, Sandeep
    ACTA APPLICANDAE MATHEMATICAE, 2024, 193 (01)
  • [24] Lorentz transformations for the schrödinger equation
    Shtelen V.
    Journal of Nonlinear Mathematical Physics, 1997, 4 (3-4) : 480 - 481
  • [25] Iterative Solutions of the Schrödinger Equation
    George Rawitscher
    Few-Body Systems, 2014, 55 : 821 - 824
  • [26] A canonical dilation of the Schrödinger equation
    M. F. Brown
    Russian Journal of Mathematical Physics, 2014, 21 : 316 - 325
  • [27] On the Linear Forms of the Schrödinger Equation
    Y. Kasri
    A. Bérard
    Y. Grandati
    L. Chetouani
    International Journal of Theoretical Physics, 2012, 51 : 1370 - 1378
  • [28] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [29] Thermodynamic Gravity and the Schrödinger Equation
    Merab Gogberashvili
    International Journal of Theoretical Physics, 2011, 50 : 2391 - 2402
  • [30] Matlab package for the Schrödinger equation
    Damian Trif
    Journal of Mathematical Chemistry, 2008, 43 : 1163 - 1176