On the Linear Forms of the Schrödinger Equation

被引:0
|
作者
Y. Kasri
A. Bérard
Y. Grandati
L. Chetouani
机构
[1] Université Abderrahmane Mira de Béjaia,Laboratoire de Physique Théorique
[2] Université Paul Verlaine-Metz,Institut de Physique, Equipe BioPhyStat, ICPMB, IF CNRS 2843
[3] Université Mentouri Constantine,Département de Physique, Faculté des Sciences Exactes
关键词
Dirac oscillator; Duffin-Kemmer-Petiau equation; Galilean invariance;
D O I
暂无
中图分类号
学科分类号
摘要
Generalising the linearisation procedure used by Dirac and later by Lévy-Leblond, we derive the first-order non-relativistic wave equations for particles of spin 1 and spin 3/2 starting from the Schrödinger equation. By the introduction in the momentum of a correction linear in coordinates, we establish the wave equation of the radial harmonic oscillator with spin-orbit coupling.
引用
收藏
页码:1370 / 1378
页数:8
相关论文
共 50 条
  • [1] Fractional schrödinger equation with zero and linear potentials
    Saleh Baqer
    Lyubomir Boyadjiev
    Fractional Calculus and Applied Analysis, 2016, 19 : 973 - 988
  • [2] On the Transformation Operator for the Schrödinger Equation with an Additional Linear Potential
    A. Kh. Khanmamedov
    M. G. Makhmudova
    Functional Analysis and Its Applications, 2020, 54 : 73 - 76
  • [3] Linear Instability of Breathers for the Focusing Nonlinear Schrödinger Equation
    Mariana Haragus
    Dmitry E. Pelinovsky
    Journal of Nonlinear Science, 2022, 32
  • [4] Instability for the Semiclassical Non-linear Schrödinger Equation
    Nicolas Burq
    Maciej Zworski
    Communications in Mathematical Physics, 2005, 260 : 45 - 58
  • [5] The non-linear Schrödinger equation with a periodic δ-interaction
    Jaime Angulo Pava
    Gustavo Ponce
    Bulletin of the Brazilian Mathematical Society, New Series, 2013, 44 : 497 - 551
  • [6] Bifurcation from infinity for an asymptotically linear Schrödinger equation
    Wojciech Kryszewski
    Andrzej Szulkin
    Journal of Fixed Point Theory and Applications, 2014, 16 : 411 - 435
  • [7] On the variational principle for the non-linear Schrödinger equation
    Zsuzsanna É. Mihálka
    Ádám Margócsy
    Ágnes Szabados
    Péter R. Surján
    Journal of Mathematical Chemistry, 2020, 58 : 340 - 351
  • [8] On Shtelen’s Solution of the Free Linear Schrödinger Equation
    Zachary W.W.
    Journal of Nonlinear Mathematical Physics, 1997, 4 (3-4) : 377 - 382
  • [9] Specificity of the Schrödinger equation
    Cetto A.M.
    la Peña L.
    Valdés-Hernández A.
    Quantum Studies: Mathematics and Foundations, 2015, 2 (3) : 275 - 287
  • [10] Hyperbolic Schrödinger equation
    Zheng Z.
    Xuegang Y.
    Advances in Applied Clifford Algebras, 2004, 14 (2) : 207 - 213