On the Linear Forms of the Schrödinger Equation

被引:0
|
作者
Y. Kasri
A. Bérard
Y. Grandati
L. Chetouani
机构
[1] Université Abderrahmane Mira de Béjaia,Laboratoire de Physique Théorique
[2] Université Paul Verlaine-Metz,Institut de Physique, Equipe BioPhyStat, ICPMB, IF CNRS 2843
[3] Université Mentouri Constantine,Département de Physique, Faculté des Sciences Exactes
关键词
Dirac oscillator; Duffin-Kemmer-Petiau equation; Galilean invariance;
D O I
暂无
中图分类号
学科分类号
摘要
Generalising the linearisation procedure used by Dirac and later by Lévy-Leblond, we derive the first-order non-relativistic wave equations for particles of spin 1 and spin 3/2 starting from the Schrödinger equation. By the introduction in the momentum of a correction linear in coordinates, we establish the wave equation of the radial harmonic oscillator with spin-orbit coupling.
引用
收藏
页码:1370 / 1378
页数:8
相关论文
共 50 条
  • [31] Separability of Solutions to a Schr?dinger Equation
    王文华
    曹怀信
    郭志华
    余保民
    Communications in Theoretical Physics, 2014, 62 (08) : 205 - 209
  • [32] On Gravitational Effects in the Schrödinger Equation
    M. D. Pollock
    Foundations of Physics, 2014, 44 : 368 - 388
  • [33] Theory of bifurcations of the Schrödinger equation
    A. A. Boichuk
    A. A. Pokutnyi
    Differential Equations, 2017, 53 : 855 - 863
  • [34] Symmetries of the Free Schrödinger Equation
    G. A. Kotel'nikov
    Journal of Russian Laser Research, 2002, 23 : 565 - 579
  • [35] Schrödinger Equation with Signed Hamiltonian
    A. A. Loboda
    Russian Journal of Mathematical Physics, 2020, 27 : 99 - 103
  • [36] An asymptotic expression of the Schrödinger equation
    Zhaosheng Feng
    David Y. Gao
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 363 - 375
  • [37] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [38] On the exact discretization of Schrödinger equation
    Chou, Chih-Lung
    1600, Elsevier B.V. (386):
  • [39] Finite Temperature Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Yi-Heng Wu
    Qing-Cai Wang
    Yan Wang
    International Journal of Theoretical Physics, 2011, 50 : 2546 - 2551
  • [40] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40