On the Linear Forms of the Schrödinger Equation

被引:0
|
作者
Y. Kasri
A. Bérard
Y. Grandati
L. Chetouani
机构
[1] Université Abderrahmane Mira de Béjaia,Laboratoire de Physique Théorique
[2] Université Paul Verlaine-Metz,Institut de Physique, Equipe BioPhyStat, ICPMB, IF CNRS 2843
[3] Université Mentouri Constantine,Département de Physique, Faculté des Sciences Exactes
关键词
Dirac oscillator; Duffin-Kemmer-Petiau equation; Galilean invariance;
D O I
暂无
中图分类号
学科分类号
摘要
Generalising the linearisation procedure used by Dirac and later by Lévy-Leblond, we derive the first-order non-relativistic wave equations for particles of spin 1 and spin 3/2 starting from the Schrödinger equation. By the introduction in the momentum of a correction linear in coordinates, we establish the wave equation of the radial harmonic oscillator with spin-orbit coupling.
引用
收藏
页码:1370 / 1378
页数:8
相关论文
共 50 条
  • [41] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [42] Schrödinger Equation for An Extended Electron
    Antônio B. Nassar
    International Journal of Theoretical Physics, 2007, 46 : 548 - 552
  • [43] Schrödinger Equation in Moving Domains
    Alessandro Duca
    Romain Joly
    Annales Henri Poincaré, 2021, 22 : 2029 - 2063
  • [44] Canonical averaging of the Schrödinger equation
    A. G. Chirkov
    Technical Physics, 2002, 47 : 275 - 277
  • [45] General Solution of the Schrödinger Equation
    Sergeenko, M. N.
    PHYSICS OF PARTICLES AND NUCLEI, 2024, 55 (06) : 1506 - 1510
  • [46] Lagrangian form of Schrödinger equation
    D. Arsenović
    N. Burić
    D. M. Davidović
    S. Prvanović
    Foundations of Physics, 2014, 44 : 725 - 735
  • [47] Schrödinger Equation for Energy Levels as a Linear Equation for Probability Distributions Identified with Quantum States
    Vladimir N. Chernega
    Margarita A. Man’ko
    Vladimir I. Man’ko
    Journal of Russian Laser Research, 2020, 41 : 441 - 450
  • [48] On polynomial Trefftz spaces for the linear time-dependent Schrödinger equation☆
    Gomez, Sergio
    Moiola, Andrea
    Perugia, Ilaria
    Stocker, Paul
    APPLIED MATHEMATICS LETTERS, 2023, 146
  • [49] On the planar Schrödinger equation with indefinite linear part and critical growth nonlinearity
    Sitong Chen
    Xianhua Tang
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [50] Ergodicity for a weakly damped stochastic non-linear Schrödinger equation
    Arnaud Debussche
    Cyril Odasso
    Journal of Evolution Equations, 2005, 5 : 317 - 356