Schrödinger equation as a confluent Heun equation

被引:0
|
作者
Figueiredo, Bartolomeu Donatila Bonorino [1 ]
机构
[1] Ctr Brasileiro Pesquisas Fis CBPF, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil
关键词
CHE; quasiexact solvabbily; exact solutions; Heun equations; polynomial solutions; nonpolynomial solutions; SPHEROIDAL WAVE-EQUATION;
D O I
10.1088/1402-4896/ad3510
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article deals with two classes of quasi-exactly solvable (QES) trigonometric potentials for which the one-dimensional Schr & ouml;dinger equation reduces to a confluent Heun equation (CHE) where the independent variable takes only finite values. Power series for the CHE are used to get polynomial and nonpolynomial eigenfunctions. Polynomials occur only for special sets of parameters and characterize the quasi-exact solvability. Nonpolynomial solutions occur for all admissible values of the parameters (even for values which give polynomials), and are bounded and convergent in the entire range of the independent variable. Moreover, throughout the article we examine other QES trigonometric and hyperbolic potentials. In all cases, for a polynomial solution there is a convergent nonpolynomial solution.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Separability of Solutions to a Schr?dinger Equation
    王文华
    曹怀信
    郭志华
    余保民
    Communications in Theoretical Physics, 2014, 62 (08) : 205 - 209
  • [32] On Gravitational Effects in the Schrödinger Equation
    M. D. Pollock
    Foundations of Physics, 2014, 44 : 368 - 388
  • [33] Theory of bifurcations of the Schrödinger equation
    A. A. Boichuk
    A. A. Pokutnyi
    Differential Equations, 2017, 53 : 855 - 863
  • [34] Symmetries of the Free Schrödinger Equation
    G. A. Kotel'nikov
    Journal of Russian Laser Research, 2002, 23 : 565 - 579
  • [35] Schrödinger Equation with Signed Hamiltonian
    A. A. Loboda
    Russian Journal of Mathematical Physics, 2020, 27 : 99 - 103
  • [36] An asymptotic expression of the Schrödinger equation
    Zhaosheng Feng
    David Y. Gao
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 363 - 375
  • [37] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [38] On the exact discretization of Schrödinger equation
    Chou, Chih-Lung
    1600, Elsevier B.V. (386):
  • [39] Finite Temperature Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Yi-Heng Wu
    Qing-Cai Wang
    Yan Wang
    International Journal of Theoretical Physics, 2011, 50 : 2546 - 2551
  • [40] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40