Schrödinger equation as a confluent Heun equation

被引:0
|
作者
Figueiredo, Bartolomeu Donatila Bonorino [1 ]
机构
[1] Ctr Brasileiro Pesquisas Fis CBPF, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil
关键词
CHE; quasiexact solvabbily; exact solutions; Heun equations; polynomial solutions; nonpolynomial solutions; SPHEROIDAL WAVE-EQUATION;
D O I
10.1088/1402-4896/ad3510
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article deals with two classes of quasi-exactly solvable (QES) trigonometric potentials for which the one-dimensional Schr & ouml;dinger equation reduces to a confluent Heun equation (CHE) where the independent variable takes only finite values. Power series for the CHE are used to get polynomial and nonpolynomial eigenfunctions. Polynomials occur only for special sets of parameters and characterize the quasi-exact solvability. Nonpolynomial solutions occur for all admissible values of the parameters (even for values which give polynomials), and are bounded and convergent in the entire range of the independent variable. Moreover, throughout the article we examine other QES trigonometric and hyperbolic potentials. In all cases, for a polynomial solution there is a convergent nonpolynomial solution.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [42] PT-Symmetric Potentials from the Confluent Heun Equation
    Levai, Geza
    ENTROPY, 2021, 23 (01) : 1 - 19
  • [43] Schrödinger Equation for An Extended Electron
    Antônio B. Nassar
    International Journal of Theoretical Physics, 2007, 46 : 548 - 552
  • [44] Schrödinger Equation in Moving Domains
    Alessandro Duca
    Romain Joly
    Annales Henri Poincaré, 2021, 22 : 2029 - 2063
  • [45] Canonical averaging of the Schrödinger equation
    A. G. Chirkov
    Technical Physics, 2002, 47 : 275 - 277
  • [46] General Solution of the Schrödinger Equation
    Sergeenko, M. N.
    PHYSICS OF PARTICLES AND NUCLEI, 2024, 55 (06) : 1506 - 1510
  • [47] Lagrangian form of Schrödinger equation
    D. Arsenović
    N. Burić
    D. M. Davidović
    S. Prvanović
    Foundations of Physics, 2014, 44 : 725 - 735
  • [48] Asymptotic and numeric study of eigenvalues of the double confluent Heun equation
    Lay, W
    Bay, K
    Slavyanov, SY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (42): : 8521 - 8531
  • [49] Single polymer dynamics in elongational flow and the confluent Heun equation
    Vincenzi, D.
    Bodenschatz, E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (34): : 10691 - 10701
  • [50] An algorithm to obtain global solutions of the double confluent Heun equation
    J. Abad
    F. J. Gómez
    J. Sesma
    Numerical Algorithms, 2008, 49 : 33 - 51