Schrödinger equation as a confluent Heun equation

被引:0
|
作者
Figueiredo, Bartolomeu Donatila Bonorino [1 ]
机构
[1] Ctr Brasileiro Pesquisas Fis CBPF, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil
关键词
CHE; quasiexact solvabbily; exact solutions; Heun equations; polynomial solutions; nonpolynomial solutions; SPHEROIDAL WAVE-EQUATION;
D O I
10.1088/1402-4896/ad3510
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article deals with two classes of quasi-exactly solvable (QES) trigonometric potentials for which the one-dimensional Schr & ouml;dinger equation reduces to a confluent Heun equation (CHE) where the independent variable takes only finite values. Power series for the CHE are used to get polynomial and nonpolynomial eigenfunctions. Polynomials occur only for special sets of parameters and characterize the quasi-exact solvability. Nonpolynomial solutions occur for all admissible values of the parameters (even for values which give polynomials), and are bounded and convergent in the entire range of the independent variable. Moreover, throughout the article we examine other QES trigonometric and hyperbolic potentials. In all cases, for a polynomial solution there is a convergent nonpolynomial solution.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Confluent Heun Equation and Confluent Hypergeometric Equation
    Slavyanov S.Y.
    Salatich A.A.
    Journal of Mathematical Sciences, 2018, 232 (2) : 157 - 163
  • [2] CONFLUENT EQUATIONS OF HEUN EQUATION
    DECARREAU, A
    MARONI, P
    ROBERT, A
    ANNALES DE LA SOCIETE SCIENTIFIQUE DE BRUXELLES SERIES 1-SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1978, 92 (03): : 151 - 189
  • [3] Symmetries of the Confluent Heun Equation
    A. Ya. Kazakov
    Journal of Mathematical Sciences, 2003, 117 (2) : 3918 - 3927
  • [4] Schrödinger potentials solvable in terms of the confluent Heun functions
    A. M. Ishkhanyan
    Theoretical and Mathematical Physics, 2016, 188 : 980 - 993
  • [5] Generalized confluent hypergeometric solutions of the Heun confluent equation
    Ishkhanyan, T. A.
    Ishkhanyan, A. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 338 : 624 - 630
  • [6] The Harmonic Lagrange Top and the Confluent Heun Equation
    Sean R. Dawson
    Holger R. Dullin
    Diana M. H. Nguyen
    Regular and Chaotic Dynamics, 2022, 27 : 443 - 459
  • [7] The Harmonic Lagrange Top and the Confluent Heun Equation
    Dawson, Sean R.
    Dullin, Holger R.
    H. Nguyen, Diana M.
    REGULAR & CHAOTIC DYNAMICS, 2022, 27 (04): : 443 - 459
  • [8] Integral relations for solutions of the confluent Heun equation
    El-Jaick, Lea Jaccoud
    Figueiredo, Bartolomeu D. B.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 885 - 904
  • [9] Evolutionary dynamics and eigenspectrum of confluent Heun equation
    Jain, Kavita
    Devi, Archana
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (39)
  • [10] Specificity of the Schrödinger equation
    Cetto A.M.
    la Peña L.
    Valdés-Hernández A.
    Quantum Studies: Mathematics and Foundations, 2015, 2 (3) : 275 - 287