The Harmonic Lagrange Top and the Confluent Heun Equation

被引:1
|
作者
Dawson, Sean R. [1 ]
Dullin, Holger R. [1 ]
H. Nguyen, Diana M. [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
来源
REGULAR & CHAOTIC DYNAMICS | 2022年 / 27卷 / 04期
关键词
symmetric rigid body; Lagrange top; Hamiltonian Hopf bifurcation; quantisation; confluent Heun equation; ROTATING BLACK-HOLE; RIGID-BODY; MONODROMY; PERTURBATIONS; SINGULARITIES; MOLECULE; SYSTEMS; MOTION;
D O I
10.1134/S1560354722040049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The harmonic Lagrange top is the Lagrange top plus a quadratic (harmonic) potential term. We describe the top in the space fixed frame using a global description with a Poisson structure on T *S-3. This global description naturally leads to a rational parametrisation of the set of critical values of the energy-momentum map. We show that there are 4 different topological types for generic parameter values. The quantum mechanics of the harmonic Lagrange top is described by the most general confluent Heun equation (also known as the generalised spheroidal wave equation). We derive formulas for an infinite pentadiagonal symmetric matrix representing the Hamiltonian from which the spectrum is computed.
引用
收藏
页码:443 / 459
页数:17
相关论文
共 50 条
  • [1] The Harmonic Lagrange Top and the Confluent Heun Equation
    Sean R. Dawson
    Holger R. Dullin
    Diana M. H. Nguyen
    Regular and Chaotic Dynamics, 2022, 27 : 443 - 459
  • [2] Confluent Heun Equation and Confluent Hypergeometric Equation
    Slavyanov S.Y.
    Salatich A.A.
    Journal of Mathematical Sciences, 2018, 232 (2) : 157 - 163
  • [3] CONFLUENT EQUATIONS OF HEUN EQUATION
    DECARREAU, A
    MARONI, P
    ROBERT, A
    ANNALES DE LA SOCIETE SCIENTIFIQUE DE BRUXELLES SERIES 1-SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1978, 92 (03): : 151 - 189
  • [4] Symmetries of the Confluent Heun Equation
    A. Ya. Kazakov
    Journal of Mathematical Sciences, 2003, 117 (2) : 3918 - 3927
  • [5] Schrödinger equation as a confluent Heun equation
    Figueiredo, Bartolomeu Donatila Bonorino
    PHYSICA SCRIPTA, 2024, 99 (05)
  • [6] Generalized confluent hypergeometric solutions of the Heun confluent equation
    Ishkhanyan, T. A.
    Ishkhanyan, A. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 338 : 624 - 630
  • [7] Integral relations for solutions of the confluent Heun equation
    El-Jaick, Lea Jaccoud
    Figueiredo, Bartolomeu D. B.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 885 - 904
  • [8] Evolutionary dynamics and eigenspectrum of confluent Heun equation
    Jain, Kavita
    Devi, Archana
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (39)
  • [9] On the central connection problem for the double confluent Heun equation
    Wolf, G
    MATHEMATISCHE NACHRICHTEN, 1998, 195 : 267 - 276
  • [10] Convergence and applications of some solutions of the confluent Heun equation
    El-Jaick, Lea Jaccoud
    Figueiredo, Bartolomeu D. B.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 284 : 234 - 259