COUNTING CONVEX POLYGONS IN PLANAR POINT SETS

被引:10
|
作者
MITCHELL, JSB
ROTE, G
SUNDARAM, G
WOEGINGER, G
机构
[1] GRAZ TECH UNIV,INST MATH,A-8010 GRAZ,AUSTRIA
[2] ENVIRONM SYST RES INST,REDLANDS,CA 92373
基金
美国国家科学基金会;
关键词
COMPUTATIONAL GEOMETRY; CONVEXITY; COMBINATORICS; DYNAMIC PROGRAMMING;
D O I
10.1016/0020-0190(95)00130-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a set S of n points in the plane, we compute in time O(n(3)) the total number of convex polygons whose vertices are a subset of S. We give an O(m . n(3)) algorithm for computing the number of convex k-gons with vertices in S, for all values k = 3,..., m; previously known bounds were exponential (O(n([k/2]))). We also compute the number of empty convex polygons (resp., k-gons, k less than or equal to m) with vertices in S in time O(n(3)) (resp., O(m . n(3))).
引用
收藏
页码:45 / 49
页数:5
相关论文
共 50 条