COUNTING CONVEX POLYGONS IN PLANAR POINT SETS

被引:10
|
作者
MITCHELL, JSB
ROTE, G
SUNDARAM, G
WOEGINGER, G
机构
[1] GRAZ TECH UNIV,INST MATH,A-8010 GRAZ,AUSTRIA
[2] ENVIRONM SYST RES INST,REDLANDS,CA 92373
基金
美国国家科学基金会;
关键词
COMPUTATIONAL GEOMETRY; CONVEXITY; COMBINATORICS; DYNAMIC PROGRAMMING;
D O I
10.1016/0020-0190(95)00130-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a set S of n points in the plane, we compute in time O(n(3)) the total number of convex polygons whose vertices are a subset of S. We give an O(m . n(3)) algorithm for computing the number of convex k-gons with vertices in S, for all values k = 3,..., m; previously known bounds were exponential (O(n([k/2]))). We also compute the number of empty convex polygons (resp., k-gons, k less than or equal to m) with vertices in S in time O(n(3)) (resp., O(m . n(3))).
引用
收藏
页码:45 / 49
页数:5
相关论文
共 50 条
  • [41] Counting triangulations of some classes of subdivided convex polygons
    Asinowski, Andrei
    Krattenthaler, Christian
    Mansour, Toufik
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 62 : 92 - 114
  • [42] Counting Non-Convex 5-Holes in a Planar Point Set
    Sung, Young-Hun
    Bae, Sang Won
    SYMMETRY-BASEL, 2022, 14 (01):
  • [43] On Polygons Enclosing Point Sets II
    F. Hurtado
    C. Merino
    D. Oliveros
    T. Sakai
    J. Urrutia
    I. Ventura
    Graphs and Combinatorics, 2009, 25 : 327 - 339
  • [44] On Polygons Enclosing Point Sets II
    Hurtado, F.
    Merino, C.
    Oliveros, D.
    Sakai, T.
    Urrutia, J.
    Ventura, I.
    GRAPHS AND COMBINATORICS, 2009, 25 (03) : 327 - 339
  • [45] TRANSLATIONS OF PLANAR CONVEX SETS
    NISHIURA, T
    SCHNITZE.F
    ARCHIV DER MATHEMATIK, 1971, 22 (01) : 103 - &
  • [46] Extremal convex planar sets
    Ting, L
    Keller, JB
    DISCRETE & COMPUTATIONAL GEOMETRY, 2005, 33 (03) : 369 - 393
  • [47] AN ISOPERIMETRIC INEQUALITY FOR CONVEX POLYGONS AND CONVEX-SETS WITH THE SAME SYMMETRALS
    LONGINETTI, M
    GEOMETRIAE DEDICATA, 1986, 20 (01) : 27 - 41
  • [48] Extremal Convex Planar Sets
    Lu Ting
    Joseph B. Keller
    Discrete & Computational Geometry, 2005, 33 : 369 - 393
  • [49] On Counting Monotone Polygons and Holes in a Point Set
    Bae S.W.
    Journal of Computing Science and Engineering, 2023, 17 (03): : 109 - 116
  • [50] A Simple Aggregative Algorithm for Counting Triangulations of Planar Point Sets and Related Problems
    Alvarez, Victor
    Seidel, Raimund
    PROCEEDINGS OF THE TWENTY-NINETH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SOCG'13), 2013, : 1 - 8