COUNTING CONVEX POLYGONS IN PLANAR POINT SETS

被引:10
|
作者
MITCHELL, JSB
ROTE, G
SUNDARAM, G
WOEGINGER, G
机构
[1] GRAZ TECH UNIV,INST MATH,A-8010 GRAZ,AUSTRIA
[2] ENVIRONM SYST RES INST,REDLANDS,CA 92373
基金
美国国家科学基金会;
关键词
COMPUTATIONAL GEOMETRY; CONVEXITY; COMBINATORICS; DYNAMIC PROGRAMMING;
D O I
10.1016/0020-0190(95)00130-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a set S of n points in the plane, we compute in time O(n(3)) the total number of convex polygons whose vertices are a subset of S. We give an O(m . n(3)) algorithm for computing the number of convex k-gons with vertices in S, for all values k = 3,..., m; previously known bounds were exponential (O(n([k/2]))). We also compute the number of empty convex polygons (resp., k-gons, k less than or equal to m) with vertices in S in time O(n(3)) (resp., O(m . n(3))).
引用
收藏
页码:45 / 49
页数:5
相关论文
共 50 条
  • [31] On the existence of U-polygons of class c ≥ 4 in planar point sets
    Huck, Christian
    DISCRETE MATHEMATICS, 2009, 309 (16) : 4977 - 4981
  • [32] COUNTING THIN AND BUSHY TRIANGULATIONS OF CONVEX POLYGONS
    CHATTOPADHYAY, S
    DAS, PP
    PATTERN RECOGNITION LETTERS, 1991, 12 (03) : 139 - 144
  • [33] On Polygons Excluding Point Sets
    Radoslav Fulek
    Balázs Keszegh
    Filip Morić
    Igor Uljarević
    Graphs and Combinatorics, 2013, 29 : 1741 - 1753
  • [34] On Polygons Excluding Point Sets
    Fulek, Radoslav
    Keszegh, Balazs
    Moric, Filip
    Uljarevic, Igor
    GRAPHS AND COMBINATORICS, 2013, 29 (06) : 1741 - 1753
  • [35] Large empty convex polygons in k-convex sets
    Gábor Kun
    Gábor Lippner
    Periodica Mathematica Hungarica, 2003, 46 (1) : 81 - 88
  • [36] COVERING CONVEX-SETS WITH NONOVERLAPPING POLYGONS
    EDELSBRUNNER, H
    ROBISON, AD
    SHEN, XJ
    DISCRETE MATHEMATICS, 1990, 81 (02) : 153 - 164
  • [37] Strongly normal sets of convex polygons or polyhedra
    Saha, PK
    Rosenfeld, A
    PATTERN RECOGNITION LETTERS, 1998, 19 (12) : 1119 - 1124
  • [38] CONVEX POLYGONS DETERMINED BY A FINITE PLANAR SET
    BONNICE, WE
    AMERICAN MATHEMATICAL MONTHLY, 1974, 81 (07): : 749 - 752
  • [39] Some inequalities for planar convex sets containing one lattice point
    Hernandez, MA
    Gomis, SS
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1998, 58 (01) : 159 - 166
  • [40] Linear-size planar Manhattan network for convex point sets
    Jana, Satyabrata
    Maheshwari, Anil
    Roy, Sasanka
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2022, 100