Disjoint empty convex pentagons in planar point sets

被引:0
|
作者
Bhaswar B. Bhattacharya
Sandip Das
机构
[1] Stanford University,Department of Statistics
[2] Indian Statistical Institute,Advanced Computing and Microelectronics Unit
来源
关键词
convex hull; discrete geometry; empty convex polygons; Erdős-Szekeres theorem; pentagons; 52C10; 52A10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we obtain the first non-trivial lower bound on the number of disjoint empty convex pentagons in planar points sets. We show that the number of disjoint empty convex pentagons in any set of n points in the plane, no three on a line, is at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\left\lfloor {\tfrac{{5n}} {{47}}} \right\rfloor $\end{document}. This bound can be further improved to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tfrac{{3n - 1}} {{28}} $\end{document} for infinitely many n.
引用
收藏
页码:73 / 86
页数:13
相关论文
共 50 条
  • [1] Disjoint empty convex pentagons in planar point sets
    Bhattacharya, Bhaswar B.
    Das, Sandip
    PERIODICA MATHEMATICA HUNGARICA, 2013, 66 (01) : 73 - 86
  • [2] Empty Convex Hexagons in Planar Point Sets
    Tobias Gerken
    Discrete & Computational Geometry, 2008, 39 : 239 - 272
  • [3] Empty convex hexagons in planar point sets
    Gerken, Tobias
    DISCRETE & COMPUTATIONAL GEOMETRY, 2008, 39 (1-3) : 239 - 272
  • [4] EMPTY PENTAGONS IN POINT SETS WITH COLLINEARITIES
    Barat, Janos
    Dujmovic, Vida
    Joret, Gwenael
    Payne, Michael S.
    Scharf, Ludmila
    Schymura, Daria
    Valtr, Pavel
    Wood, David R.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) : 198 - 209
  • [5] A Minimal Planar Point Set with Specified Disjoint Empty Convex Subsets
    Hosono, Kiyoshi
    Urabe, Masatsugu
    COMPUTATIONAL GEOMETRY AND GRAPH THEORY, 2008, 4535 : 90 - 100
  • [6] Planar point sets with a small number of empty convex polygons
    Bárány, I
    Valtr, P
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2004, 41 (02) : 243 - 266
  • [7] Planar sets with few empty convex polygons
    Dumitrescu, A
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2000, 36 (1-2) : 93 - 109
  • [8] On empty convex polygons in a planar point set
    Pinchasi, R
    Radoicic, R
    Sharir, M
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (03) : 385 - 419
  • [9] Partitioning point sets in space into disjoint convex polytopes
    Urabe, M
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1999, 13 (03): : 173 - 178
  • [10] On the number of disjoint convex quadrilaterals for a planar point set
    Hosono, K
    Urabe, M
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2001, 20 (03): : 97 - 104