Disjoint empty convex pentagons in planar point sets

被引:0
|
作者
Bhaswar B. Bhattacharya
Sandip Das
机构
[1] Stanford University,Department of Statistics
[2] Indian Statistical Institute,Advanced Computing and Microelectronics Unit
来源
关键词
convex hull; discrete geometry; empty convex polygons; Erdős-Szekeres theorem; pentagons; 52C10; 52A10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we obtain the first non-trivial lower bound on the number of disjoint empty convex pentagons in planar points sets. We show that the number of disjoint empty convex pentagons in any set of n points in the plane, no three on a line, is at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\left\lfloor {\tfrac{{5n}} {{47}}} \right\rfloor $\end{document}. This bound can be further improved to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tfrac{{3n - 1}} {{28}} $\end{document} for infinitely many n.
引用
收藏
页码:73 / 86
页数:13
相关论文
共 50 条
  • [41] Linear-size planar Manhattan network for convex point sets
    Jana, Satyabrata
    Maheshwari, Anil
    Roy, Sasanka
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2022, 100
  • [42] TRANSLATIONS OF PLANAR CONVEX SETS
    NISHIURA, T
    SCHNITZE.F
    ARCHIV DER MATHEMATIK, 1971, 22 (01) : 103 - &
  • [43] Extremal convex planar sets
    Ting, L
    Keller, JB
    DISCRETE & COMPUTATIONAL GEOMETRY, 2005, 33 (03) : 369 - 393
  • [44] Large empty convex polygons in k-convex sets
    Gábor Kun
    Gábor Lippner
    Periodica Mathematica Hungarica, 2003, 46 (1) : 81 - 88
  • [45] Extremal Convex Planar Sets
    Lu Ting
    Joseph B. Keller
    Discrete & Computational Geometry, 2005, 33 : 369 - 393
  • [46] SETS WITH NO EMPTY CONVEX 7-GONS
    HORTON, JD
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1983, 26 (04): : 482 - 484
  • [47] THE DIFFERENT WAYS OF STABBING DISJOINT CONVEX-SETS
    KATCHALSKI, M
    LEWIS, T
    LIU, A
    DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 7 (02) : 197 - 206
  • [48] A Generalization of the Erdos - Szekeres Theorem to Disjoint Convex Sets
    J. Pach
    G. Tóth
    Discrete & Computational Geometry, 1998, 19 : 437 - 445
  • [49] GEOMETRIC PERMUTATIONS OF DISJOINT TRANSLATES OF CONVEX-SETS
    KATCHALSKI, M
    LEWIS, T
    LIU, A
    DISCRETE MATHEMATICS, 1987, 65 (03) : 249 - 259
  • [50] AREA, WIDTH AND DIAMETER OF PLANAR CONVEX-SETS WITH LATTICE POINT CONSTRAINTS
    SCOTT, PR
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1983, 14 (04): : 444 - 448