Disjoint empty convex pentagons in planar point sets

被引:0
|
作者
Bhaswar B. Bhattacharya
Sandip Das
机构
[1] Stanford University,Department of Statistics
[2] Indian Statistical Institute,Advanced Computing and Microelectronics Unit
来源
关键词
convex hull; discrete geometry; empty convex polygons; Erdős-Szekeres theorem; pentagons; 52C10; 52A10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we obtain the first non-trivial lower bound on the number of disjoint empty convex pentagons in planar points sets. We show that the number of disjoint empty convex pentagons in any set of n points in the plane, no three on a line, is at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\left\lfloor {\tfrac{{5n}} {{47}}} \right\rfloor $\end{document}. This bound can be further improved to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tfrac{{3n - 1}} {{28}} $\end{document} for infinitely many n.
引用
收藏
页码:73 / 86
页数:13
相关论文
共 50 条
  • [31] New inequalities for planar convex sets with lattice point constraints
    Awyong, PW
    Scott, PR
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 54 (03) : 391 - 396
  • [32] ON PLANAR CONVEX-SETS CONTAINING ONE LATTICE POINT
    SCOTT, PR
    QUARTERLY JOURNAL OF MATHEMATICS, 1985, 36 (141): : 105 - 111
  • [33] COUNTING CONVEX KAPPA-GONS IN PLANAR POINT SETS
    ROTE, G
    WOEGINGER, G
    INFORMATION PROCESSING LETTERS, 1992, 41 (04) : 191 - 194
  • [34] Reconfirmation of two results on disjoint empty convex polygons
    Wu, Liping
    Ding, Ren
    DISCRETE GEOMETRY, COMBINATORICS AND GRAPH THEORY, 2007, 4381 : 216 - +
  • [35] ON DISJOINT HOLES IN POINT SETS
    Scheucher, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 1049 - 1056
  • [36] Disjoint empty disks supported by a point set
    Dumitrescu A.
    Jiang M.
    Journal of Geometry, 2013, 104 (2) : 277 - 295
  • [37] The combinatorial encoding of disjoint convex sets in the plane
    Jacob E. Goodman
    Richard Pollack
    Combinatorica, 2008, 28 : 69 - 81
  • [38] The combinatorial encoding of disjoint convex sets in the plane
    Goodman, Jacob E.
    Pollack, Richard
    COMBINATORICA, 2008, 28 (01) : 69 - 81
  • [39] Disjoint triangles and pentagons in a graph
    Bauer, Ryan
    Wang, Hong
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2010, 46 : 79 - 89
  • [40] Some inequalities for planar convex sets containing one lattice point
    Hernandez, MA
    Gomis, SS
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1998, 58 (01) : 159 - 166