Functional limit theorems for additive and multiplicative schemes in the Cox-Ingersoll-Ross model

被引:1
|
作者
Mishura, Yuliia [1 ]
Munchak, Yevheniia [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Volodymyrska Str 64, UA-01601 Kiev, Ukraine
来源
关键词
Cox-Ingersoll-Ross process; discrete approximation scheme; functional limit theorems;
D O I
10.15559/16-VMSTA48
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the Cox-Ingersoll-Ross (CIR) process in the regime where the process does not hit zero. We construct additive and multiplicative discrete approximation schemes for the price of asset that is modeled by the CIR process and geometric CIR process. In order to construct these schemes, we take the Euler approximations of the CIR process itself but replace the increments of the Wiener process with iid bounded vanishing symmetric random variables. We introduce a "truncated" CIR process and apply it to prove the weak convergence of asset prices. We establish the fact that this "truncated" process does not hit zero under the same condition considered for the original nontruncated process.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [41] Cox-Ingersoll-Ross债券定价模型的推广
    郭君默
    李时银
    潘素娟
    厦门大学学报(自然科学版), 2009, 48 (05) : 644 - 647
  • [42] A NONAUTONOMOUS COX-INGERSOLL-ROSS EQUATION WITH GROWING INITIAL CONDITIONS
    Goldstein, Gisele Ruiz
    Goldstein, Jerome A.
    Mininni, Rosa Maria
    Romanelli, Silvia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (12): : 3689 - 3698
  • [43] Parameter Estimation for Discretely Observed Cox-Ingersoll-Ross Model with Small Levy Noises
    Wei, Chao
    ENGINEERING LETTERS, 2019, 27 (03) : 631 - 638
  • [44] Estimation of a pure-jump stable Cox-Ingersoll-Ross process
    Bayraktar, Elise
    Clement, Emmanuelle
    BERNOULLI, 2025, 31 (01) : 484 - 508
  • [45] From Transience to Recurrence for Cox-Ingersoll-Ross Model When b < 0
    Zhang, Mingli
    Zong, Gaofeng
    MATHEMATICS, 2023, 11 (21)
  • [46] New Approximations to Bond Prices in the Cox-Ingersoll-Ross Convergence Model with Dynamic Correlation
    Stehlikova, Beata
    MATHEMATICS, 2021, 9 (13)
  • [47] α-平稳Cox-Ingersoll-Ross模型的参数估计
    魏超
    何朝兵
    山西大学学报(自然科学版), 2021, 44 (03) : 483 - 490
  • [48] Fractional Cox-Ingersoll-Ross process with non-zero << mean >>
    Mishura, Yuliya
    Yurchenko-Tytarenko, Anton
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2018, 5 (01): : 99 - 111
  • [49] Local asymptotic properties for Cox-Ingersoll-Ross process with discrete observations
    Ben Alaya, Mohamed
    Kebaier, Ahmed
    Tran, Ngoc Khue
    SCANDINAVIAN JOURNAL OF STATISTICS, 2020, 47 (04) : 1401 - 1464
  • [50] Parameter estimation for discretely observed Cox-Ingersoll-Ross model driven by fractional Levy processes
    Ding, Jiangrui
    Wei, Chao
    AIMS MATHEMATICS, 2023, 8 (05): : 12168 - 12184