Parameter Estimation for Discretely Observed Cox-Ingersoll-Ross Model with Small Levy Noises

被引:0
|
作者
Wei, Chao [1 ]
机构
[1] Anyang Normal Univ, Sch Math & Stat, Anyang 455000, Peoples R China
基金
中国国家自然科学基金;
关键词
Least squares estimator; Levy noises; discrete observations; consistency; ASYMPTOTIC PROPERTIES;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper is concerned with the parameter estimation problem for Cox-Ingersoll-Ross model with small Levy noises from discrete observations. The least squares method is used to obtain the parameter estimators and the explicit formula of the estimation error is given. The consistency of the estimators are derived when a small dispersion coefficient epsilon -> 0 and n -> infinity simultaneously by using Cauchy-Schwarz inequality, Gronwall's inequality, Markov inequality and dominated convergence. The asymptotic distribution of the estimation error is studied. The simulation is made to verify the effectiveness of the least squares estimators.
引用
收藏
页码:631 / 638
页数:8
相关论文
共 50 条
  • [1] Parameter estimation for discretely observed cox-ingersoll-ross model with small lévy noises
    Wei, Chao
    Engineering Letters, 2019, 27 (03): : 631 - 638
  • [2] Parameter estimation for discretely observed Cox-Ingersoll-Ross model driven by fractional Levy processes
    Ding, Jiangrui
    Wei, Chao
    AIMS MATHEMATICS, 2023, 8 (05): : 12168 - 12184
  • [3] Estimation for the Discretely Observed Cox-Ingersoll-Ross Model Driven by Small Symmetrical Stable Noises
    Wei, Chao
    SYMMETRY-BASEL, 2020, 12 (03):
  • [4] Gaussian estimation for discretely observed Cox-Ingersoll-Ross model
    Wei, Chao
    Shu, Huisheng
    Liu, Yurong
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2016, 45 (05) : 561 - 574
  • [5] Estimation in the Cox-Ingersoll-Ross model
    Overbeck, L
    Ryden, T
    ECONOMETRIC THEORY, 1997, 13 (03) : 430 - 461
  • [6] Fractional Levy Cox-Ingersoll-Ross and Jacobi processes
    Fink, Holger
    Schluechtermann, Georg
    STATISTICS & PROBABILITY LETTERS, 2018, 142 : 84 - 91
  • [7] Change detection in the Cox-Ingersoll-Ross model
    Pap, Gyula
    Szabo, Tamas T.
    STATISTICS & RISK MODELING, 2016, 33 (1-2) : 21 - 40
  • [8] A stable Cox-Ingersoll-Ross model with restart
    Peng, Jun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (02) : 1185 - 1194
  • [9] Wiener chaos and the Cox-Ingersoll-Ross model
    Grasselli, MR
    Hurd, TR
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2054): : 459 - 479
  • [10] Parameter estimation for Cox-Ingersoll-Ross process with two-sided reflections
    Shi, Yiwei
    Shu, Huisheng
    Wang, Chunyang
    Zhang, Xuekang
    STATISTICS & PROBABILITY LETTERS, 2025, 221