Functional limit theorems for additive and multiplicative schemes in the Cox-Ingersoll-Ross model

被引:1
|
作者
Mishura, Yuliia [1 ]
Munchak, Yevheniia [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Volodymyrska Str 64, UA-01601 Kiev, Ukraine
来源
关键词
Cox-Ingersoll-Ross process; discrete approximation scheme; functional limit theorems;
D O I
10.15559/16-VMSTA48
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the Cox-Ingersoll-Ross (CIR) process in the regime where the process does not hit zero. We construct additive and multiplicative discrete approximation schemes for the price of asset that is modeled by the CIR process and geometric CIR process. In order to construct these schemes, we take the Euler approximations of the CIR process itself but replace the increments of the Wiener process with iid bounded vanishing symmetric random variables. We introduce a "truncated" CIR process and apply it to prove the weak convergence of asset prices. We establish the fact that this "truncated" process does not hit zero under the same condition considered for the original nontruncated process.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [31] Discretization and Asymptotic Normality of Drift Parameters Estimator in the Cox-Ingersoll-Ross Model
    Prykhodko, Olha
    Ralchenko, Kostiantyn
    AUSTRIAN JOURNAL OF STATISTICS, 2025, 54 (01) : 82 - 99
  • [32] Rate of convergence of discretized drift parameters estimators in the Cox-Ingersoll-Ross model
    Chernova, Oksana
    Dehtiar, Olena
    Mishura, Yuliya
    Ralchenko, Kostiantyn
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (13) : 4857 - 4879
  • [33] Maximum Likelihood Estimation of the Cox-Ingersoll-Ross Model Using Particle Filters
    De Rossi, Giuliano
    COMPUTATIONAL ECONOMICS, 2010, 36 (01) : 1 - 16
  • [34] Optimal guaranteed estimation methods for the Cox-Ingersoll-Ross models
    Ben Alaya, Mohamed
    Ngo, Thi Bao Tram
    Pergamenchtchikov, Serguei
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2025,
  • [35] Valuing Multirisk Catastrophe Reinsurance Based on the Cox-Ingersoll-Ross (CIR) Model
    Chao, Wen
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [36] Fractional Cox-Ingersoll-Ross process with small Hurst indices
    Mishura, Yuliya
    Yurchenko-Tytarenko, Anton
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2019, 6 (01): : 13 - 39
  • [37] A GENERALIZED COX-INGERSOLL-ROSS EQUATION WITH GROWING INITIAL CONDITIONS
    Goldstein, Gisele Ruiz
    Goldstein, Jerome A.
    Mininni, Rosa Maria
    Romanelli, Silvia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (05): : 1513 - 1528
  • [38] Efficient portfolio dependent on Cox-Ingersoll-Ross interest rate
    Kambarbaeva G.S.
    Moscow University Mathematics Bulletin, 2013, 68 (1) : 18 - 25
  • [39] Irreversible investment with Cox-Ingersoll-Ross type mean reversion
    Ewald, Christian-Oliver
    Wang, Wen-Kai
    MATHEMATICAL SOCIAL SCIENCES, 2010, 59 (03) : 314 - 318
  • [40] Some Bernstein processes similar to Cox-Ingersoll-Ross ones
    Houda, Mohamad
    Lescot, Paul
    STOCHASTICS AND DYNAMICS, 2019, 19 (06)