Optimal guaranteed estimation methods for the Cox-Ingersoll-Ross models

被引:0
|
作者
Ben Alaya, Mohamed [1 ]
Ngo, Thi Bao Tram [1 ]
Pergamenchtchikov, Serguei [1 ]
机构
[1] Normandie Univ, Univ Rouen Normandie, CNRS, LMRS,UMR 6085, F-76000 Rouen, France
关键词
Cox-Ingersoll-Ross processes; sequential estimation; parameter estimation; minimax estimation; SEQUENTIAL ESTIMATION;
D O I
10.1080/17442508.2025.2450219
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study parameter estimation problems for the Cox-Ingersoll-Ross (CIR) processes. For the first time for such models, sequential estimation procedures are proposed. In the non-asymptotic setting, the proposed sequential procedures provide the estimation with non-asymptotic fixed mean square accuracy. For the scalar parameter estimation problems non-asymptotic normality properties for the proposed estimators are established even in the cases when the classical non-sequential maximum likelihood estimators cannot be calculated. Moreover, the Laplace transformations for the mean observation durations are obtained. In the asymptotic setting, the limit forms for the mean observation durations are found and it is shown that the constructed sequential estimators uniformly converge in distribution to normal random variables. Then using the Local Asymptotic Normality (LAN) property, it is obtained asymptotic sharp lower bound for the minimax risks in the class of all sequential procedures with the same mean observation duration and as a consequence, it is established that the proposed sequential procedures are optimal in the minimax sense in this class.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Estimation in the Cox-Ingersoll-Ross model
    Overbeck, L
    Ryden, T
    ECONOMETRIC THEORY, 1997, 13 (03) : 430 - 461
  • [2] Analyticity of the Cox-Ingersoll-Ross semigroup
    Fornaro, S.
    Metafune, G.
    POSITIVITY, 2020, 24 (04) : 915 - 931
  • [3] Gaussian estimation for discretely observed Cox-Ingersoll-Ross model
    Wei, Chao
    Shu, Huisheng
    Liu, Yurong
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2016, 45 (05) : 561 - 574
  • [4] Optimal Mortgage Prepayment Under the Cox-Ingersoll-Ross Model
    Jones, Chris
    Chen, Xinfu
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2016, 7 (01): : 552 - 566
  • [5] Two methods of estimation of the drift parameters of the Cox-Ingersoll-Ross process: Continuous observations
    Dehtiar, Olena
    Mishura, Yuliya
    Ralchenko, Kostiantyn
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (19) : 6818 - 6833
  • [6] Estimation of a pure-jump stable Cox-Ingersoll-Ross process
    Bayraktar, Elise
    Clement, Emmanuelle
    BERNOULLI, 2025, 31 (01) : 484 - 508
  • [7] Change detection in the Cox-Ingersoll-Ross model
    Pap, Gyula
    Szabo, Tamas T.
    STATISTICS & RISK MODELING, 2016, 33 (1-2) : 21 - 40
  • [8] UNIFORM APPROXIMATION OF THE COX-INGERSOLL-ROSS PROCESS
    Milstein, Grigori N.
    Schoenmakers, John
    ADVANCES IN APPLIED PROBABILITY, 2015, 47 (04) : 1132 - 1156
  • [9] A stable Cox-Ingersoll-Ross model with restart
    Peng, Jun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (02) : 1185 - 1194
  • [10] Wiener chaos and the Cox-Ingersoll-Ross model
    Grasselli, MR
    Hurd, TR
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2054): : 459 - 479