Optimal guaranteed estimation methods for the Cox-Ingersoll-Ross models

被引:0
|
作者
Ben Alaya, Mohamed [1 ]
Ngo, Thi Bao Tram [1 ]
Pergamenchtchikov, Serguei [1 ]
机构
[1] Normandie Univ, Univ Rouen Normandie, CNRS, LMRS,UMR 6085, F-76000 Rouen, France
关键词
Cox-Ingersoll-Ross processes; sequential estimation; parameter estimation; minimax estimation; SEQUENTIAL ESTIMATION;
D O I
10.1080/17442508.2025.2450219
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study parameter estimation problems for the Cox-Ingersoll-Ross (CIR) processes. For the first time for such models, sequential estimation procedures are proposed. In the non-asymptotic setting, the proposed sequential procedures provide the estimation with non-asymptotic fixed mean square accuracy. For the scalar parameter estimation problems non-asymptotic normality properties for the proposed estimators are established even in the cases when the classical non-sequential maximum likelihood estimators cannot be calculated. Moreover, the Laplace transformations for the mean observation durations are obtained. In the asymptotic setting, the limit forms for the mean observation durations are found and it is shown that the constructed sequential estimators uniformly converge in distribution to normal random variables. Then using the Local Asymptotic Normality (LAN) property, it is obtained asymptotic sharp lower bound for the minimax risks in the class of all sequential procedures with the same mean observation duration and as a consequence, it is established that the proposed sequential procedures are optimal in the minimax sense in this class.
引用
收藏
页数:34
相关论文
共 50 条
  • [21] Maximum Likelihood Estimation of the Cox-Ingersoll-Ross Model Using Particle Filters
    De Rossi, Giuliano
    COMPUTATIONAL ECONOMICS, 2010, 36 (01) : 1 - 16
  • [22] Embedding the Vasicek model into the Cox-Ingersoll-Ross model
    Sinkala, W.
    Leach, P. G. L.
    O'Hara, J. G.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (02) : 152 - 159
  • [23] Low-dimensional Cox-Ingersoll-Ross process
    Mishura, Yuliya
    Pilipenko, Andrey
    Yurchenko-Tytarenko, Anton
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2024, 96 (05) : 1530 - 1550
  • [24] An optimal system and group-invariant solutions of the Cox-Ingersoll-Ross pricing equation
    Sinkala, W.
    Leach, P. G. L.
    O'Hara, J. G.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 201 (1-2) : 95 - 107
  • [25] LIMIT THEOREMS FOR A COX-INGERSOLL-ROSS PROCESS WITH HAWKES JUMPS
    Zhu, Lingjiong
    JOURNAL OF APPLIED PROBABILITY, 2014, 51 (03) : 699 - 712
  • [26] Cox-Ingersoll-Ross model for wind speed modeling and forecasting
    Bensoussan, Alain
    Brouste, Alexandre
    WIND ENERGY, 2016, 19 (07) : 1355 - 1365
  • [27] Parameter Estimation for Discretely Observed Cox-Ingersoll-Ross Model with Small Levy Noises
    Wei, Chao
    ENGINEERING LETTERS, 2019, 27 (03) : 631 - 638
  • [28] Fractional Cox-Ingersoll-Ross process with small Hurst indices
    Mishura, Yuliya
    Yurchenko-Tytarenko, Anton
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2019, 6 (01): : 13 - 39
  • [29] Asymptotic properties of estimators in a stable Cox-Ingersoll-Ross model
    Li, Zenghu
    Ma, Chunhua
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (08) : 3196 - 3233
  • [30] A GENERALIZED COX-INGERSOLL-ROSS EQUATION WITH GROWING INITIAL CONDITIONS
    Goldstein, Gisele Ruiz
    Goldstein, Jerome A.
    Mininni, Rosa Maria
    Romanelli, Silvia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (05): : 1513 - 1528