Optimal guaranteed estimation methods for the Cox-Ingersoll-Ross models

被引:0
|
作者
Ben Alaya, Mohamed [1 ]
Ngo, Thi Bao Tram [1 ]
Pergamenchtchikov, Serguei [1 ]
机构
[1] Normandie Univ, Univ Rouen Normandie, CNRS, LMRS,UMR 6085, F-76000 Rouen, France
关键词
Cox-Ingersoll-Ross processes; sequential estimation; parameter estimation; minimax estimation; SEQUENTIAL ESTIMATION;
D O I
10.1080/17442508.2025.2450219
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study parameter estimation problems for the Cox-Ingersoll-Ross (CIR) processes. For the first time for such models, sequential estimation procedures are proposed. In the non-asymptotic setting, the proposed sequential procedures provide the estimation with non-asymptotic fixed mean square accuracy. For the scalar parameter estimation problems non-asymptotic normality properties for the proposed estimators are established even in the cases when the classical non-sequential maximum likelihood estimators cannot be calculated. Moreover, the Laplace transformations for the mean observation durations are obtained. In the asymptotic setting, the limit forms for the mean observation durations are found and it is shown that the constructed sequential estimators uniformly converge in distribution to normal random variables. Then using the Local Asymptotic Normality (LAN) property, it is obtained asymptotic sharp lower bound for the minimax risks in the class of all sequential procedures with the same mean observation duration and as a consequence, it is established that the proposed sequential procedures are optimal in the minimax sense in this class.
引用
收藏
页数:34
相关论文
共 50 条
  • [31] Numerical evaluation of complex logarithms in the Cox-Ingersoll-Ross model
    Teng, L.
    Ehrhardt, M.
    Guenther, M.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (05) : 1083 - 1095
  • [32] The role of adaptivity in a numerical method for the Cox-Ingersoll-Ross model
    Kelly, Conall
    Lord, Gabriel
    Maulana, Heru
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 410
  • [33] Efficient portfolio dependent on Cox-Ingersoll-Ross interest rate
    Kambarbaeva G.S.
    Moscow University Mathematics Bulletin, 2013, 68 (1) : 18 - 25
  • [34] Irreversible investment with Cox-Ingersoll-Ross type mean reversion
    Ewald, Christian-Oliver
    Wang, Wen-Kai
    MATHEMATICAL SOCIAL SCIENCES, 2010, 59 (03) : 314 - 318
  • [35] Some Bernstein processes similar to Cox-Ingersoll-Ross ones
    Houda, Mohamad
    Lescot, Paul
    STOCHASTICS AND DYNAMICS, 2019, 19 (06)
  • [36] Interest rate derivatives for the fractional Cox-Ingersoll-Ross model
    Bishwal, Jaya P. N.
    ALGORITHMIC FINANCE, 2023, 10 (1-2) : 53 - 66
  • [37] Cox-Ingersoll-Ross债券定价模型的推广
    郭君默
    李时银
    潘素娟
    厦门大学学报(自然科学版), 2009, 48 (05) : 644 - 647
  • [38] A NONAUTONOMOUS COX-INGERSOLL-ROSS EQUATION WITH GROWING INITIAL CONDITIONS
    Goldstein, Gisele Ruiz
    Goldstein, Jerome A.
    Mininni, Rosa Maria
    Romanelli, Silvia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (12): : 3689 - 3698
  • [39] Parameter estimation for discretely observed Cox-Ingersoll-Ross model driven by fractional Levy processes
    Ding, Jiangrui
    Wei, Chao
    AIMS MATHEMATICS, 2023, 8 (05): : 12168 - 12184
  • [40] Estimation for the Discretely Observed Cox-Ingersoll-Ross Model Driven by Small Symmetrical Stable Noises
    Wei, Chao
    SYMMETRY-BASEL, 2020, 12 (03):