Functional limit theorems for additive and multiplicative schemes in the Cox-Ingersoll-Ross model

被引:1
|
作者
Mishura, Yuliia [1 ]
Munchak, Yevheniia [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Volodymyrska Str 64, UA-01601 Kiev, Ukraine
来源
关键词
Cox-Ingersoll-Ross process; discrete approximation scheme; functional limit theorems;
D O I
10.15559/16-VMSTA48
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the Cox-Ingersoll-Ross (CIR) process in the regime where the process does not hit zero. We construct additive and multiplicative discrete approximation schemes for the price of asset that is modeled by the CIR process and geometric CIR process. In order to construct these schemes, we take the Euler approximations of the CIR process itself but replace the increments of the Wiener process with iid bounded vanishing symmetric random variables. We introduce a "truncated" CIR process and apply it to prove the weak convergence of asset prices. We establish the fact that this "truncated" process does not hit zero under the same condition considered for the original nontruncated process.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [21] Fractional Levy Cox-Ingersoll-Ross and Jacobi processes
    Fink, Holger
    Schluechtermann, Georg
    STATISTICS & PROBABILITY LETTERS, 2018, 142 : 84 - 91
  • [22] The Cox-Ingersoll-Ross process under volatility uncertainty
    Akhtari, Bahar
    Li, Hanwu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
  • [23] Pricing of LIBOR futures by martingale method in Cox-Ingersoll-Ross model
    Ping Li
    Peng Shi
    Guangdong Huang
    Xiaojun Shi
    Journal of Systems Science and Complexity, 2010, 23 : 261 - 269
  • [24] Pricing of LIBOR futures by martingale method in Cox-Ingersoll-Ross model
    Li, Ping
    Shi, Peng
    Huang, Guangdong
    Shi, Xiaojun
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2010, 23 (02) : 261 - 269
  • [25] Harnack and super poincare inequalities for generalized Cox-Ingersoll-Ross model
    Huang, Xing
    Zhao, Fei
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2020, 38 (04) : 730 - 746
  • [26] Cox-Ingersoll-Ross模型的统计推断
    陈萍
    杨孝平
    应用概率统计, 2005, (03) : 285 - 292
  • [27] 跳跃扩散Cox-Ingersoll-Ross利率模型
    盛洁
    闫理坦
    苏州科技大学学报(自然科学版), 2018, 35 (01) : 33 - 38
  • [28] THE SEMIGROUP GOVERNING THE GENERALIZED COX-INGERSOLL-ROSS EQUATION
    Goldstein, Gisele Ruiz
    Goldstein, Jerome A.
    Mininni, Rosa Maria
    Romanelli, Silvia
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2016, 21 (3-4) : 235 - 264
  • [29] An adaptive splitting method for the Cox-Ingersoll-Ross process
    Kelly, Conall
    Lord, Gabriel J.
    APPLIED NUMERICAL MATHEMATICS, 2023, 186 : 252 - 273
  • [30] Low-dimensional Cox-Ingersoll-Ross process
    Mishura, Yuliya
    Pilipenko, Andrey
    Yurchenko-Tytarenko, Anton
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2024, 96 (05) : 1530 - 1550