ON THE MAXIMAL CIRCUMRADIUS OF A PLANAR CONVEX SET CONTAINING ONE LATTICE POINT

被引:1
|
作者
AWYONG, PW [1 ]
SCOTT, PR [1 ]
机构
[1] UNIV ADELAIDE,DEPT PURE MATH,ADELAIDE,SA 5005,AUSTRALIA
关键词
D O I
10.1017/S0004972700014519
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a result about the maximal circumradius of a planar compact convex set having circumcentre O and containing no non-zero lattice points in its interior. In addition, we show that under certain conditions, the set with maximal circumradius is a triangle with an edge containing two lattice points.
引用
收藏
页码:137 / 151
页数:15
相关论文
共 50 条
  • [41] Counting Non-Convex 5-Holes in a Planar Point Set
    Sung, Young-Hun
    Bae, Sang Won
    SYMMETRY-BASEL, 2022, 14 (01):
  • [42] An Efficient Convex Hull Algorithm Using Affine Transformation in Planar Point Set
    Xing, Changyuan
    Xiong, Zhongyang
    Zhang, Yufang
    Wu, Xuegang
    Dan, Jingpei
    Zhang, Tingping
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2014, 39 (11) : 7785 - 7793
  • [43] An Efficient Convex Hull Algorithm Using Affine Transformation in Planar Point Set
    Changyuan Xing
    Zhongyang Xiong
    Yufang Zhang
    Xuegang Wu
    Jingpei Dan
    Tingping Zhang
    Arabian Journal for Science and Engineering, 2014, 39 : 7785 - 7793
  • [44] On the existence of a convex point subset containing one triangle in the plane
    Hosono, K
    DISCRETE MATHEMATICS, 2005, 305 (1-3) : 201 - 218
  • [45] Circumradius-diameter and width-inradius relations for lattice constrained convex sets
    Awyong, PW
    Scott, PR
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 59 (01) : 147 - 152
  • [46] Lattice points in planar convex domains
    Krätzel, E
    MONATSHEFTE FUR MATHEMATIK, 2004, 143 (02): : 145 - 162
  • [47] Lattice Points in Planar Convex Domains
    Ekkehard Krätzel
    Monatshefte für Mathematik, 2004, 143 : 145 - 162
  • [48] Fast convex hull algorithm of planar point set based on sorted simple polygon
    Jin, Wenhua
    He, Tao
    Liu, Xiaoping
    Tang, Weiqing
    Tang, Rongxi
    Jisuanji Xuebao/Chinese Journal of Computers, 21 (06): : 533 - 539
  • [49] MAXIMAL SET OF CONSTANT WIDTH IN A LATTICE
    SALLEE, GT
    PACIFIC JOURNAL OF MATHEMATICS, 1969, 28 (03) : 669 - &
  • [50] Contracting the maximal points of an ordered convex set
    Burton, GR
    JOURNAL OF CONVEX ANALYSIS, 2003, 10 (01) : 255 - 264