ON THE MAXIMAL CIRCUMRADIUS OF A PLANAR CONVEX SET CONTAINING ONE LATTICE POINT

被引:1
|
作者
AWYONG, PW [1 ]
SCOTT, PR [1 ]
机构
[1] UNIV ADELAIDE,DEPT PURE MATH,ADELAIDE,SA 5005,AUSTRALIA
关键词
D O I
10.1017/S0004972700014519
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a result about the maximal circumradius of a planar compact convex set having circumcentre O and containing no non-zero lattice points in its interior. In addition, we show that under certain conditions, the set with maximal circumradius is a triangle with an edge containing two lattice points.
引用
收藏
页码:137 / 151
页数:15
相关论文
共 50 条
  • [31] DISCREPANCY OF A CONVEX SET WITH ZERO CURVATURE AT ONE POINT
    Gariboldi, Bianca
    MATHEMATIKA, 2020, 66 (02) : 458 - 474
  • [32] A Minimal Planar Point Set with Specified Disjoint Empty Convex Subsets
    Hosono, Kiyoshi
    Urabe, Masatsugu
    COMPUTATIONAL GEOMETRY AND GRAPH THEORY, 2008, 4535 : 90 - 100
  • [33] A Convex Hull Algorithm for Planar Point Set Based on Privacy Protecting
    Wang Qiang
    Zhang Yuan-ping
    PROCEEDINGS OF THE FIRST INTERNATIONAL WORKSHOP ON EDUCATION TECHNOLOGY AND COMPUTER SCIENCE, VOL III, 2009, : 434 - 437
  • [34] An Efficient Algorithm of Convex Hull for Very Large Planar Point Set
    Fan, Guangquan
    Ma, Liping
    Yang, Bingru
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTER SCIENCE AND ENGINEERING (CSE 2013), 2013, 42 : 37 - 40
  • [35] Efficient convex hull algorithm for very large planar point set
    Fan, Guangquan
    Zhang, Guiyun
    Yang, Bingru
    Jisuanji Gongcheng/Computer Engineering, 2006, 32 (21): : 64 - 66
  • [36] ON THE AREA OF PLANAR CONVEX-SETS CONTAINING MANY LATTICE POINTS
    SCOTT, PR
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1987, 35 (03) : 441 - 454
  • [37] ONE GENERAL-METHOD FOR THE CONVEX SET POINT FINDING
    FAZYLOV, ER
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1983, (06): : 43 - 51
  • [38] ON THE CONVEX LAYERS OF A PLANAR SET
    CHAZELLE, B
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (04) : 509 - 517
  • [39] AREA, WIDTH AND DIAMETER OF PLANAR CONVEX-SETS WITH LATTICE POINT CONSTRAINTS
    SCOTT, PR
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1983, 14 (04): : 444 - 448
  • [40] Width-diameter relations for planar convex sets with lattice point constraints
    Awyong, PW
    Scott, PR
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 53 (03) : 469 - 478