Circumradius-diameter and width-inradius relations for lattice constrained convex sets

被引:0
|
作者
Awyong, PW
Scott, PR
机构
[1] Nanyang Technol Univ, Natl Inst Educ, Div Math, Singapore 259756, Singapore
[2] Univ Adelaide, Dept Pure Math, Adelaide, SA 5005, Australia
关键词
D O I
10.1017/S0004972700032706
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a planar, compact, convex set with circumradius R, diameter d, width w and inradius r, and containing no points of the integer lattice. We generalise inequalities concerning the 'dual' quantities (2R - d) and (w - 2r) to rectangular lattices. We then use these results to obtain corresponding inequalities for a planar convex set with two interior lattice points. Finally, we conjecture corresponding results for sets containing one interior lattice point.
引用
收藏
页码:147 / 152
页数:6
相关论文
共 14 条