EXTREMAL TRIANGULATIONS OF CONVEX POLYGONS

被引:0
|
作者
Bezdek, Andras [1 ]
Fodor, Ferenc [2 ,3 ]
机构
[1] Auburn Univ, Dept Math & Stat, 221 Parker Hall, Auburn, AL 36849 USA
[2] Univ Szeged, Bolyai Inst, Dept Geometry, H-6720 Szeged, Hungary
[3] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
来源
SYMMETRY-CULTURE AND SCIENCE | 2011年 / 22卷 / 3-4期
关键词
convex polygons; Malfatti's problem; triangulations;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
T. Andreescu and O. Mushkarov asked the following Malfatti-type problem: What is the maximum total area of k nonoverlapping triangles placed in a given circle? In connection with this unsolved problem, it is proved that if each triangle must be inscribed in a given convex disc K, then the union of the triangles in the maximal arrangement is a convex (k - 2)-gon that is also inscribed in K. Furthemore, the presented constructions demonstrate that the nonoverlapping condition is essential in the sense that for any pair (n, k) with 1 < k < n - 2 there exists a convex n-gon in which the family of k triangles with maximal total area contains overlapping triangles. We also consider the analogous problem in which the total area is minimized.
引用
收藏
页码:427 / 434
页数:8
相关论文
共 50 条
  • [31] PROBABILITY POLYGONS IN CONVEX POLYGONS
    BUCHTA, C
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1984, 347 : 212 - 220
  • [32] DISSECTIONS OF POLYGONS INTO CONVEX POLYGONS
    Zak, Andrzej
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2010, 20 (02) : 223 - 244
  • [33] Approximation of convex polygons by polygons
    Koutschan, Christoph
    Ponomarchuk, Anton
    Schicho, Josef
    2021 23RD INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2021), 2021, : 91 - 98
  • [34] CONVEX POLYGONS AND SEPARATION OF CONVEX
    Rivera-Campo, Eduardo
    Urrutia, Jorge
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2022, 59 (3-4) : 274 - 283
  • [35] GRAPHS ASSOCIATED WITH TRIANGULATIONS OF LATTICE POLYGONS
    DETEMPLE, D
    ROBERTSON, JM
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1989, 47 : 391 - 398
  • [36] Graph of triangulations of a convex polygon and tree of triangulations
    Dept. de Matemàt. Aplicada II, Univ. Politecnica de Catalunya, Pau Gargallo 5, 08028-Barcelona, Spain
    Comput Geom Theory Appl, 3 (179-188):
  • [37] Graph of triangulations of a convex polygon and tree of triangulations
    Hurtado, F
    Noy, M
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1999, 13 (03): : 179 - 188
  • [38] An extremal property of lattice polygons
    Bliznyakov, Nikolai
    Kondratyev, Stanislav
    PORTUGALIAE MATHEMATICA, 2018, 75 (3-4) : 205 - 248
  • [39] Extremal Polygons with Minimal Perimeter
    á.G. Horváth
    Periodica Mathematica Hungarica, 1997, 34 (1-2) : 83 - 92
  • [40] Characterization of Extremal Antipodal Polygons
    Aichholzer, O.
    Caraballo, L. E.
    Diaz-Banez, J. M.
    Fabila-Monroy, R.
    Ochoa, C.
    Nigsch, P.
    GRAPHS AND COMBINATORICS, 2015, 31 (02) : 321 - 333