Characterization of Extremal Antipodal Polygons

被引:3
|
作者
Aichholzer, O. [1 ]
Caraballo, L. E. [2 ]
Diaz-Banez, J. M. [2 ]
Fabila-Monroy, R. [3 ]
Ochoa, C. [4 ]
Nigsch, P. [5 ]
机构
[1] Graz Univ Technol, Inst Software Technol, A-8010 Graz, Austria
[2] Univ Seville, Dept Matemat Aplicada 2, Seville, Spain
[3] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Matemat, Mexico City, DF, Mexico
[4] Univ Chile, DCC, Santiago, Chile
[5] Graz Univ Technol, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
Antipodal points; Extremal area polygons; Discrete and computational geometry;
D O I
10.1007/s00373-015-1548-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be a set of points on a circle such that for each point also its antipodal (mirrored with respect to the circle center) point belongs to . A polygon of size is called antipodal if it consists of precisely one point of each antipodal pair of . We provide a complete characterization of antipodal polygons which maximize (minimize, respectively) the area among all antipodal polygons of . Based on this characterization, a simple linear time algorithm is presented for computing extremal antipodal polygons. Moreover, for the generalization of antipodal polygons to higher dimensions we show that a similar characterization does not exist.
引用
收藏
页码:321 / 333
页数:13
相关论文
共 50 条
  • [1] Characterization of Extremal Antipodal Polygons
    O. Aichholzer
    L. E. Caraballo
    J. M. Díaz-Báñez
    R. Fabila-Monroy
    C. Ochoa
    P. Nigsch
    Graphs and Combinatorics, 2015, 31 : 321 - 333
  • [2] Antipodal Polygons and Their Group Properties
    Medianik, A. I.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2012, 8 (04) : 357 - 366
  • [3] FINDING EXTREMAL POLYGONS
    BOYCE, JE
    DOBKIN, DP
    DRYSDALE, RL
    GUIBAS, LJ
    SIAM JOURNAL ON COMPUTING, 1985, 14 (01) : 134 - 147
  • [4] Extremal problems for convex polygons
    Audet, Charles
    Hansen, Pierre
    Messine, Frederic
    JOURNAL OF GLOBAL OPTIMIZATION, 2007, 38 (02) : 163 - 179
  • [5] An extremal property of lattice polygons
    Bliznyakov, Nikolai
    Kondratyev, Stanislav
    PORTUGALIAE MATHEMATICA, 2018, 75 (3-4) : 205 - 248
  • [6] Extremal Polygons with Minimal Perimeter
    á.G. Horváth
    Periodica Mathematica Hungarica, 1997, 34 (1-2) : 83 - 92
  • [7] Extremal problems for convex polygons
    Charles Audet
    Pierre Hansen
    Frédéric Messine
    Journal of Global Optimization, 2007, 38 : 163 - 179
  • [8] EXTREMAL TRIANGULATIONS OF CONVEX POLYGONS
    Bezdek, Andras
    Fodor, Ferenc
    SYMMETRY-CULTURE AND SCIENCE, 2011, 22 (3-4): : 427 - 434
  • [9] EXTREMAL POLYGONS CIRCUMSCRIBED AN OVAL
    CIESLAK, W
    GOZDZ, S
    ACTA MATHEMATICA HUNGARICA, 1989, 54 (1-2) : 63 - 68
  • [10] Antipodal covers of distance-transitive generalized polygons
    Alfuraidan, M. R.
    Hall, J. I.
    Laradji, A.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2018, 48 (04) : 607 - 626