EXTREMAL TRIANGULATIONS OF CONVEX POLYGONS

被引:0
|
作者
Bezdek, Andras [1 ]
Fodor, Ferenc [2 ,3 ]
机构
[1] Auburn Univ, Dept Math & Stat, 221 Parker Hall, Auburn, AL 36849 USA
[2] Univ Szeged, Bolyai Inst, Dept Geometry, H-6720 Szeged, Hungary
[3] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
来源
SYMMETRY-CULTURE AND SCIENCE | 2011年 / 22卷 / 3-4期
关键词
convex polygons; Malfatti's problem; triangulations;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
T. Andreescu and O. Mushkarov asked the following Malfatti-type problem: What is the maximum total area of k nonoverlapping triangles placed in a given circle? In connection with this unsolved problem, it is proved that if each triangle must be inscribed in a given convex disc K, then the union of the triangles in the maximal arrangement is a convex (k - 2)-gon that is also inscribed in K. Furthemore, the presented constructions demonstrate that the nonoverlapping condition is essential in the sense that for any pair (n, k) with 1 < k < n - 2 there exists a convex n-gon in which the family of k triangles with maximal total area contains overlapping triangles. We also consider the analogous problem in which the total area is minimized.
引用
收藏
页码:427 / 434
页数:8
相关论文
共 50 条
  • [1] Convex Polygons in Geometric Triangulations
    Dumitrescu, Adrian
    Toth, Csaba D.
    COMBINATORICS PROBABILITY & COMPUTING, 2017, 26 (05): : 641 - 659
  • [2] On Minimal Triangulations of Products of Convex Polygons
    Bucher-Karlsson, Michelle
    DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 41 (02) : 328 - 347
  • [3] Extremal problems for convex polygons
    Audet, Charles
    Hansen, Pierre
    Messine, Frederic
    JOURNAL OF GLOBAL OPTIMIZATION, 2007, 38 (02) : 163 - 179
  • [4] On Minimal Triangulations of Products of Convex Polygons
    Michelle Bucher-Karlsson
    Discrete & Computational Geometry, 2009, 41 : 328 - 347
  • [5] Extremal problems for convex polygons
    Charles Audet
    Pierre Hansen
    Frédéric Messine
    Journal of Global Optimization, 2007, 38 : 163 - 179
  • [6] Improved bounds for acute triangulations of convex polygons
    Zamfirescu, Carol T.
    UTILITAS MATHEMATICA, 2013, 91 : 71 - 79
  • [7] COUNTING THIN AND BUSHY TRIANGULATIONS OF CONVEX POLYGONS
    CHATTOPADHYAY, S
    DAS, PP
    PATTERN RECOGNITION LETTERS, 1991, 12 (03) : 139 - 144
  • [8] Counting triangulations of almost-convex polygons
    Hurtado, F
    Noy, M
    ARS COMBINATORIA, 1997, 45 : 169 - 179
  • [9] Extremal problems for spherical convex polygons
    Cen Liu
    Yanxun Chang
    Archiv der Mathematik, 2022, 118 : 435 - 450
  • [10] Extremal problems for spherical convex polygons
    Liu, Cen
    Chang, Yanxun
    ARCHIV DER MATHEMATIK, 2022, 118 (04) : 435 - 450