EXTREMAL TRIANGULATIONS OF CONVEX POLYGONS

被引:0
|
作者
Bezdek, Andras [1 ]
Fodor, Ferenc [2 ,3 ]
机构
[1] Auburn Univ, Dept Math & Stat, 221 Parker Hall, Auburn, AL 36849 USA
[2] Univ Szeged, Bolyai Inst, Dept Geometry, H-6720 Szeged, Hungary
[3] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
来源
SYMMETRY-CULTURE AND SCIENCE | 2011年 / 22卷 / 3-4期
关键词
convex polygons; Malfatti's problem; triangulations;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
T. Andreescu and O. Mushkarov asked the following Malfatti-type problem: What is the maximum total area of k nonoverlapping triangles placed in a given circle? In connection with this unsolved problem, it is proved that if each triangle must be inscribed in a given convex disc K, then the union of the triangles in the maximal arrangement is a convex (k - 2)-gon that is also inscribed in K. Furthemore, the presented constructions demonstrate that the nonoverlapping condition is essential in the sense that for any pair (n, k) with 1 < k < n - 2 there exists a convex n-gon in which the family of k triangles with maximal total area contains overlapping triangles. We also consider the analogous problem in which the total area is minimized.
引用
收藏
页码:427 / 434
页数:8
相关论文
共 50 条
  • [21] Extremal problems on convex lattice polygons in sense of lp-metrics
    Zunic, J
    DISCRETE MATHEMATICS, 2002, 259 (1-3) : 237 - 250
  • [22] Coxeter Friezes and Triangulations of Polygons
    Henry, Claire-Soizic
    AMERICAN MATHEMATICAL MONTHLY, 2013, 120 (06): : 553 - 558
  • [23] Scaling limit of triangulations of polygons
    Albenque, Marie
    Holden, Nina
    Sun, Xin
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 : 1 - 43
  • [24] Foldable Triangulations of Lattice Polygons
    Joswig, Michael
    Ziegler, Guenter M.
    AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (08): : 706 - 710
  • [25] On Hamiltonian Triangulations in simple polygons
    Narasimhan, G
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1999, 9 (03) : 261 - 275
  • [26] Uniformly Acute Triangulations of Polygons
    Christopher J. Bishop
    Discrete & Computational Geometry, 2023, 70 : 1571 - 1592
  • [27] Uniformly Acute Triangulations of Polygons
    Bishop, Christopher J.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 70 (4) : 1571 - 1592
  • [28] ON COMPATIBLE TRIANGULATIONS OF SIMPLE POLYGONS
    ARONOV, B
    SEIDEL, R
    SOUVAINE, D
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1993, 3 (01): : 27 - 35
  • [29] Immersed polygons and their diagonal triangulations
    Ivanov, A. O.
    Tuzhilin, A. A.
    IZVESTIYA MATHEMATICS, 2008, 72 (01) : 63 - 90
  • [30] FINDING EXTREMAL POLYGONS
    BOYCE, JE
    DOBKIN, DP
    DRYSDALE, RL
    GUIBAS, LJ
    SIAM JOURNAL ON COMPUTING, 1985, 14 (01) : 134 - 147