Characterization of Extremal Antipodal Polygons

被引:3
|
作者
Aichholzer, O. [1 ]
Caraballo, L. E. [2 ]
Diaz-Banez, J. M. [2 ]
Fabila-Monroy, R. [3 ]
Ochoa, C. [4 ]
Nigsch, P. [5 ]
机构
[1] Graz Univ Technol, Inst Software Technol, A-8010 Graz, Austria
[2] Univ Seville, Dept Matemat Aplicada 2, Seville, Spain
[3] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Matemat, Mexico City, DF, Mexico
[4] Univ Chile, DCC, Santiago, Chile
[5] Graz Univ Technol, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
Antipodal points; Extremal area polygons; Discrete and computational geometry;
D O I
10.1007/s00373-015-1548-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be a set of points on a circle such that for each point also its antipodal (mirrored with respect to the circle center) point belongs to . A polygon of size is called antipodal if it consists of precisely one point of each antipodal pair of . We provide a complete characterization of antipodal polygons which maximize (minimize, respectively) the area among all antipodal polygons of . Based on this characterization, a simple linear time algorithm is presented for computing extremal antipodal polygons. Moreover, for the generalization of antipodal polygons to higher dimensions we show that a similar characterization does not exist.
引用
收藏
页码:321 / 333
页数:13
相关论文
共 50 条