Characterization of Extremal Antipodal Polygons

被引:3
|
作者
Aichholzer, O. [1 ]
Caraballo, L. E. [2 ]
Diaz-Banez, J. M. [2 ]
Fabila-Monroy, R. [3 ]
Ochoa, C. [4 ]
Nigsch, P. [5 ]
机构
[1] Graz Univ Technol, Inst Software Technol, A-8010 Graz, Austria
[2] Univ Seville, Dept Matemat Aplicada 2, Seville, Spain
[3] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Matemat, Mexico City, DF, Mexico
[4] Univ Chile, DCC, Santiago, Chile
[5] Graz Univ Technol, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
Antipodal points; Extremal area polygons; Discrete and computational geometry;
D O I
10.1007/s00373-015-1548-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be a set of points on a circle such that for each point also its antipodal (mirrored with respect to the circle center) point belongs to . A polygon of size is called antipodal if it consists of precisely one point of each antipodal pair of . We provide a complete characterization of antipodal polygons which maximize (minimize, respectively) the area among all antipodal polygons of . Based on this characterization, a simple linear time algorithm is presented for computing extremal antipodal polygons. Moreover, for the generalization of antipodal polygons to higher dimensions we show that a similar characterization does not exist.
引用
收藏
页码:321 / 333
页数:13
相关论文
共 50 条
  • [21] Extremal area of polygons sliding along curves
    Siersma, Dirk
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 187
  • [22] Some extremal problems for polygons in the Euclidean plane
    Nikonorov, Yurii Gennadievich
    Nikonorova, Ol'ga Yur'evna
    AEQUATIONES MATHEMATICAE, 2024, 98 (02) : 603 - 624
  • [23] Some extremal problems for polygons in the Euclidean plane
    Yuriĭ Gennadievich Nikonorov
    Ol’ga Yur’evna Nikonorova
    Aequationes mathematicae, 2024, 98 : 603 - 624
  • [24] AN EXTREMAL PROBLEM FOR POLYGONS INSCRIBED IN A CONVEX CURVE
    BOLLOBAS, B
    CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (03): : 523 - &
  • [25] Extremal Area of Polygons, sliding along a circle
    Siersma, Dirk
    HOKKAIDO MATHEMATICAL JOURNAL, 2022, 51 (01) : 175 - 187
  • [26] Extremal Problems for Convex Polygons-An Update
    Audet, Charles
    Hansen, Pierre
    Messine, Frederic
    LECTURES ON GLOBAL OPTIMIZATION, 2009, 55 : 1 - +
  • [27] Caustics of Poncelet Polygons and Classical Extremal Polynomials
    Vladimir Dragović
    Milena Radnović
    Regular and Chaotic Dynamics, 2019, 24 : 1 - 35
  • [28] Extremal convex polygons inscribed in a given convex polygon
    Kodmon, Csenge Lili
    Langi, Zsolt
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2022, 102
  • [29] A simple proof of Pach's Extremal Theorem for convex polygons
    Toussaint, Godfried T.
    PATTERN RECOGNITION LETTERS, 1982, 1 (02) : 85 - 86
  • [30] Polygons with prescribed edge slopes: configuration space and extremal points of perimeter
    Joseph Gordon
    Gaiane Panina
    Yana Teplitskaya
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2019, 60 : 1 - 15