COMPUTING BASES FOR RINGS OF PERMUTATION-INVARIANT POLYNOMIALS

被引:46
|
作者
GOBEL, M
机构
[1] Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, 72076 Tübingen
关键词
D O I
10.1006/jsco.1995.1017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let R be a commutative ring with 1, let R[X(1),..., X(n)] be the polynomial ring in X1,..., X(n) over R and let G be an arbitrary group of permutations of {X(1),..., X(n)}. The paper presents an algorithm for computing a small finite basis B of the R-algebra of G-invariant polynomials and a polynomial representation of an arbitrary G-invariant polynomial in R[X(1),..., X(n)] as a polynomial in the polynomials of the finite basis B. The algorithm works independently of the ground ring R, and the basis B contains only polynomials of total degree less than or equal to max{n, n(n - 1)/2}, independent of the size of the permutation group G.
引用
收藏
页码:285 / 291
页数:7
相关论文
共 50 条
  • [41] Permutation-Invariant Variational Autoencoder for Graph-Level Representation Learning
    Winter, Robin
    Noe, Frank
    Clevert, Djork-Arne
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [42] Synthesizing and Scaling WAN Topologies using Permutation-invariant Graph Generative Models
    Helm, Max
    Carle, Georg
    2023 19TH INTERNATIONAL CONFERENCE ON NETWORK AND SERVICE MANAGEMENT, CNSM, 2023,
  • [43] COMPLETE CLASS RESULTS FOR THE MOMENT MATRICES OF DESIGNS OVER PERMUTATION-INVARIANT SETS
    CHENG, CS
    ANNALS OF STATISTICS, 1995, 23 (01): : 41 - 54
  • [44] Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks
    Lee, Juho
    Lee, Yoonho
    Kim, Jungtaek
    Kosiorek, Adam R.
    Choi, Seungjin
    Teh, Yee Whye
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [45] Permutation-invariant collective variable to track and drive vacancy dynamics in simulations of solids
    Knaup, Jan M.
    Wehlau, Michael
    Frauenheim, Thomas
    PHYSICAL REVIEW B, 2013, 88 (22)
  • [46] ANSIG - An analytic signature for permutation-invariant two-dimensional shape representation
    Rodrigues, Jose J.
    Aguiar, Pedro M. Q.
    Xavier, Joao M. F.
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 2102 - 2109
  • [47] PERMUTATION POLYNOMIALS OVER RESIDUE CLASS RINGS
    Karpov, A., V
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2013, 22 (04): : 16 - +
  • [48] Entangling power of permutation-invariant quantum states -: art. no. 032327
    Popkov, V
    Salerno, M
    Schütz, G
    PHYSICAL REVIEW A, 2005, 72 (03):
  • [49] On standard bases in rings of differential polynomials
    Zobnin A.I.
    Journal of Mathematical Sciences, 2006, 135 (5) : 3327 - 3335
  • [50] Relative entropy of entanglement for multipartite mixed states: Permutation-invariant states and Dur states
    Wei, Tzu-Chieh
    PHYSICAL REVIEW A, 2008, 78 (01):