COMPUTING BASES FOR RINGS OF PERMUTATION-INVARIANT POLYNOMIALS

被引:46
|
作者
GOBEL, M
机构
[1] Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, 72076 Tübingen
关键词
D O I
10.1006/jsco.1995.1017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let R be a commutative ring with 1, let R[X(1),..., X(n)] be the polynomial ring in X1,..., X(n) over R and let G be an arbitrary group of permutations of {X(1),..., X(n)}. The paper presents an algorithm for computing a small finite basis B of the R-algebra of G-invariant polynomials and a polynomial representation of an arbitrary G-invariant polynomial in R[X(1),..., X(n)] as a polynomial in the polynomials of the finite basis B. The algorithm works independently of the ground ring R, and the basis B contains only polynomials of total degree less than or equal to max{n, n(n - 1)/2}, independent of the size of the permutation group G.
引用
收藏
页码:285 / 291
页数:7
相关论文
共 50 条
  • [21] Quantum and Classical Communication Complexity of Permutation-Invariant Functions
    Guan, Ziyi
    Huang, Yunqi
    Yao, Penghui
    Ye, Zekun
    41ST INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, STACS 2024, 2024, 289
  • [22] Permutation-Invariant Representation of Neural Networks with Neuron Embeddings
    Zhou, Ryan
    Muise, Christian
    Hu, Ting
    GENETIC PROGRAMMING (EUROGP 2022), 2022, : 294 - 308
  • [23] Learning Permutation-Invariant Embeddings for Description Logic Concepts
    Demir, Caglar
    Ngomo, Axel-Cyrille Ngonga
    ADVANCES IN INTELLIGENT DATA ANALYSIS XXI, IDA 2023, 2023, 13876 : 103 - 115
  • [24] On the maximal halfspace depth of permutation-invariant distributions on the simplex
    Paindaveine, Davy
    Van Bever, Germain
    STATISTICS & PROBABILITY LETTERS, 2017, 129 : 335 - 339
  • [25] On lower bounds for integration of multivariate permutation-invariant functions
    Weimar, Markus
    JOURNAL OF COMPLEXITY, 2014, 30 (01) : 87 - 97
  • [26] Path planning for permutation-invariant multi-robot formations
    Kloder, S
    Hutchinson, S
    2005 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-4, 2005, : 1797 - 1802
  • [27] Witt rings and permutation polynomials
    Zhang, QF
    ALGEBRA COLLOQUIUM, 2005, 12 (01) : 161 - 169
  • [28] SetRank: Learning a Permutation-Invariant Ranking Model for Information Retrieval
    Pang, Liang
    Xu, Jun
    Ai, Qingyao
    Lan, Yanyan
    Cheng, Xueqi
    Wen, Jirong
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 499 - 508
  • [29] Mapping Images to Scene Graphs with Permutation-Invariant Structured Prediction
    Herzig, Roei
    Raboh, Moshiko
    Chechik, Gal
    Berant, Jonathan
    Globerson, Amir
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [30] Permutation-Invariant Cascaded Attentional Set Operator for Computational Nephropathology
    Zare, Samira
    Vo, Huy Q.
    Altini, Nicola
    Bevilacqua, Vitoantonio
    Rossini, Michele
    Pesce, Francesco
    Gesualdo, Loreto
    Turkevi-Nagy, Sandor
    Becker, Jan Ulrich
    Mohan, Chandra
    Van Nguyen, Hien
    KIDNEY360, 2025, 6 (03): : 441 - 450