COMPUTING BASES FOR RINGS OF PERMUTATION-INVARIANT POLYNOMIALS

被引:46
|
作者
GOBEL, M
机构
[1] Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, 72076 Tübingen
关键词
D O I
10.1006/jsco.1995.1017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let R be a commutative ring with 1, let R[X(1),..., X(n)] be the polynomial ring in X1,..., X(n) over R and let G be an arbitrary group of permutations of {X(1),..., X(n)}. The paper presents an algorithm for computing a small finite basis B of the R-algebra of G-invariant polynomials and a polynomial representation of an arbitrary G-invariant polynomial in R[X(1),..., X(n)] as a polynomial in the polynomials of the finite basis B. The algorithm works independently of the ground ring R, and the basis B contains only polynomials of total degree less than or equal to max{n, n(n - 1)/2}, independent of the size of the permutation group G.
引用
收藏
页码:285 / 291
页数:7
相关论文
共 50 条
  • [31] Permutation-invariant codes encoding more than one qubit
    Ouyang, Yingkai
    Fitzsimons, Joseph
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [32] Risk Bounds for Learning Multiple Components with Permutation-Invariant Losses
    Lauer, Fabien
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 1178 - 1186
  • [33] Initializing a permutation-invariant quantum error-correction code
    Wu, Chunfeng
    Wang, Yimin
    Guo, Chu
    Ouyang, Yingkai
    Wang, Gangcheng
    Feng, Xun-Li
    PHYSICAL REVIEW A, 2019, 99 (01)
  • [34] Permutation-Invariant Quantum Codes With Transversal Generalized Phase Gates
    Kubischta, Eric
    Teixeira, Ian
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2025, 71 (01) : 485 - 498
  • [35] A configuration space for permutation-invariant multi-robot formations
    Kloder, S
    Bhattacharya, S
    Hutchinson, S
    2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, : 2746 - 2751
  • [36] Convexification of Permutation-Invariant Sets and an Application to Sparse Principal Component Analysis
    Kim, Jinhak
    Tawarmalani, Mohit
    Richard, Jean-Philippe P.
    MATHEMATICS OF OPERATIONS RESEARCH, 2021, 47 (04) : 2547 - 2584
  • [37] GENERALIZATIONS OF BLOM AND BLOEM'S PDF DECOMPOSITION FOR PERMUTATION-INVARIANT ESTIMATION
    Crouse, David Frederic
    Willett, Peter
    Bar-Shalom, Yaakov
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 3840 - 3843
  • [38] Permutation-Invariant Constant-Excitation Quantum Codes for Amplitude Damping
    Ouyang, Yingkai
    Chao, Rui
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (05) : 2921 - 2933
  • [39] Permutation polynomials over finite rings
    Gorcsos, Dalma
    Horvath, Gabor
    Meszaros, Anett
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 49 : 198 - 211
  • [40] The Sensory Neuron as a Transformer: Permutation-Invariant Neural Networks for Reinforcement Learning
    Tang, Yujin
    Ha, David
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,